[1] Apostol T.M.:
Introduction to analytic number theory. New York-Heidelberg-Berlin, Springer, 1976.
MR 0434929 |
Zbl 1154.11300
[2] Berndt B.:
On the average order of a class of arithmetic functions, I. J. Number Theory 3 (1971), 184-203.
MR 0284409
[3] Berndt B.:
On the average order of a class of arithmetic functions, II. J. Number Theory 3 184-203 (1971).
MR 0284409
[4] Chandrasekharan K., Narasimhan R.:
The approximate functional equation for a class of zeta-functions. Math. Ann. 152 30-64 (1963).
MR 0153643 |
Zbl 0116.27001
[5] Hafner J.L.:
The distribution and average order of the coefficients of Dedekind $\zeta$ functions. J. Number Theory 17 183-190 (1983).
MR 0716941 |
Zbl 0515.10042
[6] Hafner J.L.:
New omega results in a weighted divisor problem. J. Number Theory 28 240-257 (1988).
MR 0932373 |
Zbl 0635.10037
[7] Ivić A.: The Riemann zeta-function. New York, 1966.
[8] Krätzel E.:
Lattice Points. Dordrecht-Boston-London, Kluwer, 1988.
MR 0998378
[9] Landau E.: Elementary Number Theory. $2^{nd}$ ed., New York 1966.
[10] Nowak W.G.:
On the Piltz divisor problem with congruence conditions. Proc. $1^{st}$ CNTA Conference, Banff, 1988, (ed. R.A. Mollin) 455-469 (1990).
MR 1106679 |
Zbl 0731.11052
[11] Nowak W.G.:
On the Piltz divisor problem with congruence conditions II. Abh. Math. Sem. Univ. Hamburg 60 153-163 (1990).
MR 1087125 |
Zbl 0731.11052
[12] Nowak W.G.:
On the general asymmetric divisor problem. Abh. Math. Sem. Hamburg 65 (1995), to appear.
MR 1359135 |
Zbl 0854.11048
[13] Steinig J.:
On an integral connected with the average order of a class of arithmetical functions. J. Number Theory 4 463-468 (1972).
MR 0306096 |
Zbl 0241.10028
[14] Szegö P., Walfisz A.:
Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Erste Abhandlung). Math. Z. 26 138-156 (1927).
MR 1544849
[15] Szegö P., Walfisz A.:
Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Zweite Abhandlung). Math. Z. 26 467-486 (1927).
MR 1544868