Previous |  Up |  Next

Article

Keywords:
multidimensional asymmetric divisor problems
Summary:
A certain generalized divisor function $d^*(n)$ is studied which counts the number of factorizations of a natural number $n$ into integer powers with prescribed exponents under certain congruence restrictions. An $\Omega$-estimate is established for the remainder term in the asymptotic for its Dirichlet summatory function.
References:
[1] Apostol T.M.: Introduction to analytic number theory. New York-Heidelberg-Berlin, Springer, 1976. MR 0434929 | Zbl 1154.11300
[2] Berndt B.: On the average order of a class of arithmetic functions, I. J. Number Theory 3 (1971), 184-203. MR 0284409
[3] Berndt B.: On the average order of a class of arithmetic functions, II. J. Number Theory 3 184-203 (1971). MR 0284409
[4] Chandrasekharan K., Narasimhan R.: The approximate functional equation for a class of zeta-functions. Math. Ann. 152 30-64 (1963). MR 0153643 | Zbl 0116.27001
[5] Hafner J.L.: The distribution and average order of the coefficients of Dedekind $\zeta$ functions. J. Number Theory 17 183-190 (1983). MR 0716941 | Zbl 0515.10042
[6] Hafner J.L.: New omega results in a weighted divisor problem. J. Number Theory 28 240-257 (1988). MR 0932373 | Zbl 0635.10037
[7] Ivić A.: The Riemann zeta-function. New York, 1966.
[8] Krätzel E.: Lattice Points. Dordrecht-Boston-London, Kluwer, 1988. MR 0998378
[9] Landau E.: Elementary Number Theory. $2^{nd}$ ed., New York 1966.
[10] Nowak W.G.: On the Piltz divisor problem with congruence conditions. Proc. $1^{st}$ CNTA Conference, Banff, 1988, (ed. R.A. Mollin) 455-469 (1990). MR 1106679 | Zbl 0731.11052
[11] Nowak W.G.: On the Piltz divisor problem with congruence conditions II. Abh. Math. Sem. Univ. Hamburg 60 153-163 (1990). MR 1087125 | Zbl 0731.11052
[12] Nowak W.G.: On the general asymmetric divisor problem. Abh. Math. Sem. Hamburg 65 (1995), to appear. MR 1359135 | Zbl 0854.11048
[13] Steinig J.: On an integral connected with the average order of a class of arithmetical functions. J. Number Theory 4 463-468 (1972). MR 0306096 | Zbl 0241.10028
[14] Szegö P., Walfisz A.: Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Erste Abhandlung). Math. Z. 26 138-156 (1927). MR 1544849
[15] Szegö P., Walfisz A.: Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Zweite Abhandlung). Math. Z. 26 467-486 (1927). MR 1544868
[16] Titchmarsh E.C.: The theory of the Riemann zeta-function. Oxford, 1951. MR 0046485 | Zbl 0601.10026
Partner of
EuDML logo