[1] Banaś J.:
On drop property and nearly uniformly smooth Banach spaces. Nonlinear Analysis T.M.A. 14 (1990), 927-933.
MR 1058414
[2] Banaś J.:
Compactness conditions in the geometric theory of Banach spaces. Nonlinear Analysis T.M.A. 16 (1991), 669-682.
MR 1097324
[3] Banaś J., Frączek K.:
Conditions involving compactness in geometry of Banach spaces. Nonlinear T.M.A. 20 (1993), 1217-1230.
MR 1219238
[4] Banaś J., Goebel K.:
Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Math., vol. 60, M. Dekker, New York, Basel, 1980.
MR 0591679
[5] Daneš J.:
A geometric theorem useful in nonlinear analysis. Boll. Un. Mat. Ital. 6 (1972), 369-372.
MR 0317130
[6] Daneš J.:
On densifying and related mappings and their application in nonlinear functional analysis. Theory of Nonlinear Operators, Akademie-Verlag, Berlin, 1974, pp. 15-56.
MR 0361946
[7] Garcia-Falset J., Jimenez-Melado A., Llorens-Fuster E.: A characterization of normal structure in Banach spaces. Fixed Point Theory and Applications (K.K. Tan, ed.), World Scientific, Singapore, 1992, pp. 122-129.
[8] Goebel K., Sȩkowski T.:
The modulus of noncompact convexity. Ann. Univ. Mariae Curie- Skłodowska, Sect. A 38 (1984), 41-48.
MR 0856623
[9] Hong-Kun Xu:
Measures of noncompactness and normal type structures in Banach spaces. Panamer. Math. J. 3 (1993), 17-34.
MR 1216273 |
Zbl 0846.46008
[10] Köthe G.:
Topological Vector Spaces I. Springer Veralg, Berlin, 1969.
MR 0248498
[11] Lindenstrauss J., Tzafiri L.:
Classical Banach Spaces. Springer Verlag, Berlin, 1973.
MR 0415253
[13] Rolewicz S.:
On drop property. Studia Math. 85 (1987), 27-35.
MR 0879413