[1] Ash R.B.:
Real Analysis and Probability. Academic Press, New York, 1972.
MR 0435320
[2] Berliocchi H., Lasry J.-M.:
Intégrandes normales et mesures paramétrées en calcul de variations. Bull. Soc. Math. France 101 (1973), 129-184.
MR 0344980
[3] Burgess J., Maitra A.:
Nonexistence of measurable optimal selections. Proc. Amer. Math. Soc. 116 (1992), 1101-1106.
MR 1120505 |
Zbl 0767.28010
[6] Kucia A.: Some counterexamples for Carathéodory functions and multifunctions. submitted to Fund. Math.
[7] Kucia A., Nowak A.:
On Baire approximations of normal integrands. Comment. Math. Univ. Carolinae 30:2 (1989), 373-376.
MR 1014136 |
Zbl 0685.28001
[8] Kucia A., Nowak A.:
Relations among some classes of functions in mathematical programming. Mat. Metody Sots. Nauk 22 (1989), 29-33.
MR 1111399 |
Zbl 0742.49009
[9] Levin V.L.:
Measurable selections of multivalued mappings into topological spaces and upper envelopes of Carathéodory integrands (in Russian). Dokl. Akad. Nauk SSSR 252 (1980), 535-539 English transl.: Sov. Math. Dokl. 21 (1980), 771-775.
MR 0577834
[10] Levin V.L.:
Convex Analysis in Spaces of Measurable Functions and its Applications to Mathematics and Economics (in Russian). Nauka, Moscow, 1985.
MR 0809179
[11] Pappas G.S.:
An approximation result for normal integrands and applications to relaxed controls theory. J. Math. Anal. Appl. 93 (1983), 132-141.
MR 0699706 |
Zbl 0521.49012
[12] Rockafellar R.T.:
Integral functionals, normal integrands and measurable selections. in: Nonlinear Operators and Calculus of Variations (L. Waelbroeck, ed.), Lecture Notes in Mathematics 543, Springer, Berlin, 1976, pp. 157-207.
MR 0512209 |
Zbl 0374.49001
[13] Schäl M.:
A selection theorem for optimization problem. Arch. Math. 25 (1974), 219-224.
MR 0346632
[14] Wagner D.H.:
Survey of measurable selection theorems. SIAM J. Control 15 (1977), 859-903.
MR 0486391 |
Zbl 0407.28006
[15] Zygmunt W.: Scorza-Dragoni property (in Polish). UMCS, Lublin, 1990.