Previous |  Up |  Next

Article

Keywords:
cocycle; special flow; weak mixing
Summary:
Analytic cocycles of type $III_0$ over an irrational rotation are constructed and an example of that type is given, where all corresponding special flows are weakly mixing.
References:
[1] Aaronson J., Hamachi T., Schmidt K.: Associated actions and uniqueness of cocycles. to appear in Proc. of Okayama Conference, 1992. MR 1402476 | Zbl 1008.37003
[2] Aaronson J., Lemańczyk M., Volný D.: A salad of cocycles. preprint.
[3] Golodets V.Ya., Sinel'shchikov S.D.: Classification and structure of cocycles of amenable ergodic equivalence relations. preprint. MR 1272135 | Zbl 0821.28010
[4] Katok A.B.: Constructions in Ergodic Theory. unpublished lecture notes. Zbl 1130.37304
[5] Kočergin A.W.: On the homology of functions over dynamical systems. Dokl. AN SSSR 281 (1976). MR 0430211
[6] Kwiatkowski J., Lemańczyk M., Rudolph D.: On the weak isomorphism of measure-preserving diffeomorphisms. Isr. J. Math. 80 (1992), 33-64. MR 1248926
[7] Kwiatkowski J., Lemańczyk M., Rudolph D.: A class of cocycles having an analytic coboundary modification. Isr. J. Math. 87 (1994), 337-360. MR 1286834
[8] Moore C.C., Schmidt K.: Coboundaries and homomorphisms for non-singular actions and a problem of H. Helson. Proc. London Math. Soc. (3) 40 (1980), 443-475. MR 0572015 | Zbl 0428.28014
[9] Schmidt K.: Cocycles of Ergodic Transformation Groups. Lect. Notes in Math. Vol. 1, Mac Millan Co. of India, 1977. MR 0578731
[10] Volný D.: Constructions of smooth and analytic cocycles over irrational circle rotations. Comment. Math. Univ. Carolinae 36.4 (1995), 745-764. MR 1378696
Partner of
EuDML logo