Previous |  Up |  Next

Article

Keywords:
boundary value problems; resonance; existence
Summary:
New existence results are presented for the two point singular ``resonant'' boundary value problem $\frac{1}{p}(py')'+r y+\lambda_m qy=f(t,y,py')$ a.e\. on $[0,1]$ with $y$ satisfying Sturm Liouville or Periodic boundary conditions. Here $\lambda_m$ is the $(m+1)^{st}$ eigenvalue of $\frac{1}{pq} [(pu')' +rpu] +\lambda u=0$ a.e\. on $[0,1]$ with $u$ satisfying Sturm Liouville or Periodic boundary data.
References:
[1] Atkinson F.V.: Discrete and continuous boundary problems. Academic Press, New York, 1964. MR 0176141 | Zbl 0169.10601
[2] Atkinson F.V., Everitt W.N., Zettl A.: Regularization of a Sturm Liouville problem with an interior singularity. Diff. Int. Eq. 1 (1988), 213-221. MR 0922562 | Zbl 0715.34043
[3] Bobisud L.E., O'Regan D.: Positive solutions for a class of nonlinear singular boundary value problems at resonance. Jour. Math. Anal. Appl. 184 (1994), 263-284. MR 1278388 | Zbl 0805.34019
[4] Cesari L., Kannan R.: Existence of solutions of a nonlinear differential equation. Proc. Amer. Math. Soc. 88 (1983), 605-613. MR 0702284 | Zbl 0529.34005
[5] Fonda A., Mawhin J.: Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations. Proc. Royal Soc. Edinburgh 112A (1989), 145-153. MR 1007541 | Zbl 0677.34022
[6] Iannacci R., Nkashama M.N.: Unbounded perturbations of forced second order ordinary differential equations at resonance. Jour. Diff. Eq. 69 (1987), 289-309. MR 0903389 | Zbl 0627.34008
[7] Iannacci R., Nkashama M.N.: Nonlinear two point boundary value problems at resonance without Landesman- Lazer conditions. Proc. Amer. Math. Soc. 106 (1989), 943-952. MR 1004633
[8] Mawhin J., Ward J.R.: Periodic solutions of some forced Lienard differential equations at resonance. Archiv der Math. 41 (1983), 337-351. MR 0731606 | Zbl 0537.34037
[9] Mawhin J., Ward J.R., Willem M.: Necessary and sufficient conditions for the solvability of a nonlinear two point boundary value problem. Proc. Amer. Math. Soc. 93 (1985), 667-674. MR 0776200 | Zbl 0559.34014
[10] Mawhin J., Willem M.: Critical point theory and Hamiltonian systems. Springer Verlag, New York, 1989. MR 0982267 | Zbl 0676.58017
[11] Mawhin J., Omano W.: Two point boundary value problems for nonlinear perturbations of some singular linear differential equations at resonance. Comment. Math. Univ. Carolinae 30 (1989), 537-550. MR 1031871
[12] Naimark M.A.: Linear differential operators Part II. Ungar Publ. Co., London, 1968. MR 0262880 | Zbl 0227.34020
[13] Nkashama M.N., Santanilla J.: Existence of multiple solutions of some nonlinear boundary value problems. Jour. Diff. Eq. 84 (1990), 148-164. MR 1042663
[14] O'Regan D.: Singular Sturm Liouville problems and existence of solutions to singular nonlinear boundary value problems. Nonlinear Anal. 20 (1993), 767-779. Zbl 0780.34017
[15] O'Regan D.: Solvability of some two point boundary value problems of Dirichlet, Neumann or Periodic type. Dynamic Systems and Appl. 2 (1993), 163-182. MR 1226995 | Zbl 0785.34025
[16] O'Regan D.: Existence principles for second order nonresonant boundary value problems. Jour. Appl. Math. Stoch. Anal. 7 (1994), 487-507. MR 1310923 | Zbl 0819.34019
[17] O'Regan D.: Carathéodory theory of nonresonant second order boundary value problems. to appear. Zbl 0870.34028
[18] Ramas M., Sanchez L.: Variational elliptic problems involving noncoercive functionals. Proc. Roy. Soc. Edinburgh 112A (1989), 177-185. MR 1007543
[19] Sanchez L.: Positive solutions for a class of semilinear two point boundary value problems. Bull. Aust. Math. Soc. 45 (1992), 439-451. MR 1165150 | Zbl 0745.34017
Partner of
EuDML logo