Previous |  Up |  Next

Article

Keywords:
estimates; polynomials
Summary:
Here we study the existence of lower and upper $\ell _p$-estimates of sequences in some Banach sequence spaces. We also compute the sharp $\ell _p$ estimates in their basis. Finally, we give some applications to weak sequential continuity of polynomials.
References:
[1] Alencar R., Aron R., Dineen S.: A reflexive space of holomorphic functions in infinitely many variables. Proc. Amer. Math. Soc. 90 (1984), 407-411. MR 0728358 | Zbl 0536.46015
[2] Altshuler R.M., Dineen S.: Uniform convexity in Lorentz sequence spaces. Israel J. Math. 20 (1975), 260-274. MR 0385517
[3] Aron R.M., Dineen S.: $Q$-reflexive Banach spaces. preprint. MR 1627646 | Zbl 0916.46011
[4] Aron R., LaCruz M., Ryan R., Tonge A.: The generalized Rademacher functions. Note di Math. 22 (1992), 15-25. MR 1258560 | Zbl 0844.46002
[5] Castillo J.M.F., Sánchez F.: Weakly $p$-compact, $p$-Banach Saks and superreflexive spaces. to appear in J. Math. Appl. MR 1125690
[6] Castillo J.M.F., Sánchez F.: Remarks on the basic properties of Tsirelson's space. to appear in Note di Math.
[7] Farmer J.: Polynomial reflexivity in Banach spaces. Israel J. Math. 87 (1994), 257-273. MR 1286830 | Zbl 0819.46006
[8] Farmer J., Johnson W.B.: Polynomial Schur and Polynomial Dunford Pettis properties. Contemporary Math. 144 (1993), 95-105. MR 1209450 | Zbl 0822.46013
[9] Fetter H., Gamboa B.: The James Forest. book in preparation. Zbl 0878.46010
[10] Gonzalo R., Jaramillo J.A.: Compact polynomials between Banach spaces. Extracta Math. 8 (1993), 42-48. MR 1270328 | Zbl 1016.46503
[11] Gonzalo R., Jaramillo J.A.: Smoothness and estimates in Banach spaces. Israel J. Math. 89 (1995), 321-341. MR 1324468
[12] James R.: Superreflexive spaces with basis. Pacific J. Math. 41 (1972), 409-420. MR 0308752
[13] Jaramillo J.A., Prieto A.: On the weak polynomial convergence on a Banach space. Proc. Amer. Math. Soc. 118 (1993), 463-468. MR 1126196
[14] Jaramillo J.A., Prieto A., Zalduendo I.: The bidual of the space of polynomials on a Banach space. preprint. Zbl 0901.46030
[15] Johnson W.B., Odell E.: Subspaces of $L_p$ which embed into $\ell _p$. Compositio Math. 28 (1974), 37-49. MR 0352938
[16] Knaust H.: Orlicz sequence spaces of Banach Saks type. Archiv Math. 59 (1992), 562-565. MR 1189874 | Zbl 0735.46009
[17] Knaust H., Odell E.: On $c_0$-sequences in Banach spaces. Israel J. Math. 67:2 (1989), 153-169. MR 1026560
[18] Knaust H., Odell E.: Weakly null sequences with upper $\ell _p$-estimates. (Longhorn Notes) Lecture Notes in Math. 1470, Springer-Verlag, pp. 85-107. MR 1126741
[19] Lohman R.H., Casazza P.G.: A general construction of spaces of the type of R.C.James. Can. J. Math. 27:6 (1975), 1263-1270. MR 0399817 | Zbl 0314.46017
[20] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I, II. Springer-Verlag, 1977, 1979. MR 0500056
[21] Maleev R.P., Troyanski S.L.: Smooth functions in Orlicz spaces. Contemp. Math. 85 (1989), 355-370. MR 0983394 | Zbl 0691.46010
[22] Pelczynski A.: A property of multilinear operations. Studia Math. 16 (1957-58), 173-182. MR 0093698 | Zbl 0080.09701
[23] Ryan R.: Applications of topological tensor spaces to infinite dimensional holomorphy. Ph.D. Thesis, University College, Dublin, 1980.
[24] Sánchez F.: Suceciones débilmente $p$-sumables en espacios de Banach. Tesis doctoral Universidad de Extremadura, 1991. MR 1163592
[25] Zalduendo I.: An estimate for multilinear forms on $\ell _p$-spaces. to appear in Proc. Royal Irish Acad. 93A/1 (1993), 137-142. MR 1241848
Partner of
EuDML logo