Previous |  Up |  Next

Article

Keywords:
retract; absolute retract; path-connected; Vietoris continuous; $h$-continuous; orientor field
Summary:
In this paper we examine nonlinear integrodifferential inclusions in $\Bbb R^N$. For the nonconvex problem, we show that the solution set is a retract of the Sobolev space $W^{1,1}(T,{\Bbb R^N})$ and the retraction can be chosen to depend continuously on a parameter $\lambda $. Using that result we show that the solution multifunction admits a continuous selector. For the convex problem we show that the solution set is a retract of $C(T,{\Bbb R^N})$. Finally we prove some continuous dependence results.
References:
[1] Avgerinos E.P.: On the existence of solutions for Volterra integrable inclusions in Banach spaces. Jour. Appl. Math. and Stoch. Anal. 6 (1993), 261-270. MR 1238603
[2] Bressan A., Cellina A., Fryszkowski A.: A class of absolute retracts in spaces of integrable functions. Proc. Amer. Math. Soc. 112 (1991), 413-418. MR 1045587 | Zbl 0747.34014
[3] Cellina A.: On the set of solutions to Lipschitzian differential inclusions. Diff. and Integral Equations 1 (1988), 495-500. MR 0945823 | Zbl 0723.34009
[4] DeBlasi F.S., Myjak J.: On the solution set for differential inclusions. Bull. Pol. Acad. Sci. 33 (1985), 17-23.
[5] DeBlasi F.S., Myjak J.: On continuous approximations for multifunctions. Pacific Journal of Math. 123 (1986), 9-31. MR 0834135
[6] DeBlasi F.S., Pianigiani G., Staicu V.: On the Solution Sets of Some Nonconvex Hyperbolic Differential Inclusions. Università degli Studi di Roma, Prepr. 117, Oct. 1992.
[7] Dugundji J.: Topology. Allyn and Bacon Inc., Boston, 1966. MR 0193606 | Zbl 0397.54003
[8] Gorniewicz L.: On the solution set of differential inclusions. JMAA 113 (1986), 235-247. MR 0826673
[9] Hiai F., Umegaki H.: Integrals conditional expectations and martingales of multivalued functions. J. Multivariate Anal. 7 (1977), 149-182. MR 0507504 | Zbl 0368.60006
[10] Himmelberg C., Van Fleck F.: A note on the solution sets of differential inclusions. Rocky Mountain J. Math. 12 (1982), 621-625. MR 0683856
[11] Klein E., Thompson A.: Theory of Correspondences. Wiley, New York, 1984. MR 0752692 | Zbl 0556.28012
[12] Kuratowski K.: Topology II. Academic Press, London, 1966. MR 0217751
[13] Levin V.: Borel sections of many valued maps. Siberian Math. J. 19 (1979), 434-438. Zbl 0409.54048
[14] Nadler S.B.: Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475-483. MR 0254828
[15] Pachpatte B.G.: A note on Gronwall-Bellman inequality. J. Math. A.A. 44 (1973), 758-762. MR 0335721 | Zbl 0274.45011
[16] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. Sci. 10 (1987), 433-442. MR 0896595 | Zbl 0619.28009
[17] Papageorgiou N.S.: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 32 (1987), 437-464. MR 0914749 | Zbl 0634.28005
[18] Papageorgiou N.S.: Decomposable sets in the Lebesgue-Bochner spaces. Comment. Math. Univ. Sancti Pauli 37 (1988), 49-62. MR 0942305 | Zbl 0679.46032
[19] Papageorgiou N.S.: Existence of solutions for integrodifferential inclusions in Banach spaces. Comment. Math. Univ. Carolinae 32 (1991), 687-696. MR 1159815 | Zbl 0746.34035
[20] Ricceri B.: Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes. Atti. Acad. Naz. Linci. U. Sci. Fiz. Math. Nat. 81 (1987), 283-286. MR 0999821 | Zbl 0666.47030
[21] Rybinski L.: A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions. JMAA 160 (1991), 24-46. MR 1124074 | Zbl 0735.34016
[22] Staicu V.: On a non-convex hyperbolic differential inclusion. Proc. Edinb. Math. Soc., in press. Zbl 0769.34018
[23] Tsukada M.: Convergence of best approximations in a smooth Banach space. Journal of Approx. Theory 40 (1984), 301-309. MR 0740641 | Zbl 0545.41042
[24] Wagner D.: Surveys of measurable selection theorems. SIAM J. Control. Optim. 15 (1977), 857-903. MR 0486391
Partner of
EuDML logo