Previous |  Up |  Next

Article

Keywords:
ambit; Samuel compactification; minimal dynamical system
Summary:
Our aim is to give a description of $S(\Bbb R)$ and $M(\Bbb R)$, the phase space of universal ambit and the phase space of universal minimal dynamical system for the group of real numbers with the usual topology.
References:
[1] Arkhangel'skii A.V., Ponomarev V.I.: Osnovy obshcheĭ topologii v zadachakh i uprazhneniyakh. Nauka, Moskva, 1974. MR 0445439
[2] Balcar B., Błaszczyk A.: On minimal dynamical systems on Boolean algebras. Comment. Math. Univ. Carolinae 31 (1990), 7-11. MR 1056164
[3] Brook R.: A construction of the greatest ambit. Math. Systems Theory 4 (1970), 243-248. MR 0267038
[4] Engelking R.: General Topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[5] Gutek A.: A Generalization of Solenoids. Colloquia Math. Soc. J. Bolyai 23 (Proceedings of Colloquium on Topology, Budapest 1978), Amsterdam 1980, 547-554. MR 0588803 | Zbl 0449.54035
[6] de Vries J.: Elements of Topological Dynamics. Kluwer Academic Publishers, DordrechtBoston-London, 1993. MR 1249063 | Zbl 0783.54035
Partner of
EuDML logo