Article
Keywords:
regular content; lattice; semicompact; sequentially dominated
Summary:
Let $\Cal A$ be an algebra and $\Cal K$ a lattice of subsets of a set $X$. We show that every content on $\Cal A$ that can be approximated by $\Cal K$ in the sense of Marczewski has an extremal extension to a $\Cal K$-regular content on the algebra generated by $\Cal A$ and $\Cal K$. Under an additional assumption, we can also prove the existence of extremal regular measure extensions.
References:
[1] Adamski W.:
On regular extensions of contents and measures. J. Math. Anal. Appl. 127 (1987), 211-225.
MR 0904223 |
Zbl 0644.28002
[2] Adamski W.:
On extremal extensions of regular contents and measures. Proc. Amer. Math. Soc. 121 (1994), 1159-1164.
MR 1204367 |
Zbl 0817.28002
[3] Bierlein D., Stich W.J.A.:
On the extremality of measure extensions. Manuscripta Math. 63 (1989), 89-97.
MR 0975471 |
Zbl 0663.28004
[5] Lipecki Z.:
Components in vector lattices and extreme extensions of quasi-measures and measures. Glasgow Math. J. 35 (1993), 153-162.
MR 1220557 |
Zbl 0786.28002
[8] Pfanzagl J., Pierlo W.:
Compact systems of sets. Lecture Notes in Math., Vol. 16, SpringerVerlag, 1966.
MR 0216529 |
Zbl 0161.36604
[9] Plachky D.:
Extremal and monogenic additive set functions. Proc. Amer. Math. Soc. 54 (1976), 193-196.
MR 0419711 |
Zbl 0285.28005
[10] Schwartz L.:
Radon measures on arbitrary topological spaces and cylindrical measures. Oxford UP, 1973.
MR 0426084 |
Zbl 0298.28001
[11] von Weizsäcker H.:
Remark on extremal measure extensions. Lecture Notes in Math., Vol. 794, Springer-Verlag, 1980.
MR 0577962