[1] van Douwen E.K.:
The integers and topology. in Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam, 1984.
MR 0776622 |
Zbl 0561.54004
[2] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J.:
Star covering properties. Topology and Appl. 39 (1991), 71-103.
MR 1103993 |
Zbl 0743.54007
[4] Fleishman W.M.:
A new extension of countable compactness. Fund. Math. 67 (1970), 1-9.
MR 0264608
[6] Matveev M.V.:
A countably compact topological group which is not absolutely countably compact. Questions and Answers in General Topology 11 (1993), 173-176.
MR 1234212 |
Zbl 0808.54025
[7] Noble N.:
The continuity of functions on Cartesian products. Trans. Amer. Math. Soc. 149 (1970), 187-198.
MR 0257987 |
Zbl 0229.54028
[8] Nyikos P.J., Vaughan J.E.:
Sequentially compact, Franklin-Rajagopalan spaces. Proc. Amer. Math. Soc. 101 (1987), 149-155.
MR 0897087 |
Zbl 0626.54004
[9] Scarborough C.T., Stone A.H.:
Products of nearly compact spaces. Trans. Amer. Math. Soc. 124 (1966), 131-147.
MR 0203679 |
Zbl 0151.30001
[10] Vaughan J.E.:
Countably compact and sequentially compact spaces. in Handbook of Set- theoretic Topology, eds. K. Kunen and J. Vaughan, North-Holland, Amsterdam, 1984.
MR 0776631 |
Zbl 0562.54031
[11] Vaughan J.E.:
Small uncountable cardinals in topology. in Problems in Topology, eds. Jan van Mill and M.G. Reed, North-Holland, Amsterdam, 1990.
MR 1078647
[12] Vaughan J.E.: A countably compact, separable space which is not absolutely countably compact. Preliminary Report. Abstracts Amer. Math. Soc. 14 (November 1993), No. 888-54-37.