Previous |  Up |  Next

Article

Keywords:
countably compact; absolutely countably compact; topological group; Franklin-Rajagopalan space
Summary:
We construct a space having the properties in the title, and with the same technique, a countably compact $T_2$ topological group which is not absolutely countably compact.
References:
[1] van Douwen E.K.: The integers and topology. in Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam, 1984. MR 0776622 | Zbl 0561.54004
[2] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J.: Star covering properties. Topology and Appl. 39 (1991), 71-103. MR 1103993 | Zbl 0743.54007
[3] Engelking R.: General Topology. PWN-Polish Scientific Publications, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[4] Fleishman W.M.: A new extension of countable compactness. Fund. Math. 67 (1970), 1-9. MR 0264608
[5] Matveev M.V.: Absolutely countably compact spaces. Topology and Appl. 58 (1994), 81-92. MR 1280711 | Zbl 0801.54021
[6] Matveev M.V.: A countably compact topological group which is not absolutely countably compact. Questions and Answers in General Topology 11 (1993), 173-176. MR 1234212 | Zbl 0808.54025
[7] Noble N.: The continuity of functions on Cartesian products. Trans. Amer. Math. Soc. 149 (1970), 187-198. MR 0257987 | Zbl 0229.54028
[8] Nyikos P.J., Vaughan J.E.: Sequentially compact, Franklin-Rajagopalan spaces. Proc. Amer. Math. Soc. 101 (1987), 149-155. MR 0897087 | Zbl 0626.54004
[9] Scarborough C.T., Stone A.H.: Products of nearly compact spaces. Trans. Amer. Math. Soc. 124 (1966), 131-147. MR 0203679 | Zbl 0151.30001
[10] Vaughan J.E.: Countably compact and sequentially compact spaces. in Handbook of Set- theoretic Topology, eds. K. Kunen and J. Vaughan, North-Holland, Amsterdam, 1984. MR 0776631 | Zbl 0562.54031
[11] Vaughan J.E.: Small uncountable cardinals in topology. in Problems in Topology, eds. Jan van Mill and M.G. Reed, North-Holland, Amsterdam, 1990. MR 1078647
[12] Vaughan J.E.: A countably compact, separable space which is not absolutely countably compact. Preliminary Report. Abstracts Amer. Math. Soc. 14 (November 1993), No. 888-54-37.
Partner of
EuDML logo