Article
Keywords:
Čech-Lebesgue dimension; height dimension of posets; dyadic expansion; rigged finite open covers; partition dimension
Summary:
Using certain ideas connected with the entropy theory, several kinds of dimensions are introduced for arbitrary topological spaces. Their properties are examined, in particular, for normal spaces and quasi-discrete ones. One of the considered dimensions coincides, on these spaces, with the Čech-Lebesgue dimension and the height dimension of posets, respectively.
References:
[A35] Alexandroff P.:
Sur les espaces discrets. C.R. Acad. Sci. Paris 200 (1935), 1049-1051.
Zbl 0011.32602
[A37] Alexandroff P.:
Diskrete Räume. Mat. Sb. 2 (1937), 501-519.
Zbl 0018.09105
[K52] Katětov M.:
On the dimension of non-separable spaces, I. (Russian). Czechosl. Math. J. 77 (1952), 333-368.
MR 0061372
[K92] Katětov M.:
Entropy-like functionals: conceptual background and some results. Comment. Math. Univ. Carolinae 33 (1992), 645-660.
MR 1240186
[K93] Katětov M.:
Entropies of self-mappings of topological spaces with richer structures. Comment. Math. Univ. Carolinae 34 (1993), 747-768.
MR 1263803
[O71] Ostrand P.A.:
Covering dimension in general spaces. General Top. Appl. 1 (1971), 209-221.
MR 0288741 |
Zbl 0232.54044
[P79] Pol E.:
Some examples in the dimension theory of Tychonoff spaces. Fund. Math. 102 (1979), 29-43.
MR 0525808 |
Zbl 0398.54024
[PP79] Pol E., Pol R.:
A hereditarily normal strongly zero-dimensional space containing subspaces of arbitrarily large dimension. Fund. Math. 102 (1979), 137-142.
MR 0525937 |
Zbl 0403.54026
[Z63] Zarelua V.:
On the equality of dimensions (Russian). Mat. Sb. 62 (1963), 295-319.
MR 0157352