[1] Chow S.-N., Lu K.:
Invariant manifolds for flows in Banach spaces. J. of Differential Equations 74 (1988), 285-317.
MR 0952900 |
Zbl 0691.58034
[2] Foias C., Sell G.R., Temam R.:
Inertial manifolds for nonlinear evolutionary equations. J. of Differential Equations 73 (1988), 309-353.
MR 0943945 |
Zbl 0643.58004
[3] Henry D.:
Geometric theory of semilinear parabolic equations. Lecture Notes in Math. 840, Springer Verlag, 1981.
MR 0610244 |
Zbl 0663.35001
[4] Marion M.:
Inertial manifolds associated to partly dissipative reaction - diffusion systems. J. of Math. Anal. Appl. 143 (1989), 295-326.
MR 1022538 |
Zbl 0689.58039
[5] Miklavčič M.:
A sharp condition for existence of an inertial manifold. J. of Dynamics and Differential Equations 3 (1991), 437-457.
MR 1118343
[6] Mora X., Solà-Morales J.:
The singular limit dynamics of semilinear damped wave equation. J. of Differential Equations 78 (1989), 262-307.
MR 0992148
[7] Richards J.:
On the gaps between numbers which are the sum of two squares. Adv. Math. 46 (1982), 1-2.
MR 0676985
[8] Ševčovič D.:
Limiting behaviour of invariant manifolds for a system of singularly perturbed evolution equations. Math. Methods in the Appl. Sci. 17 (1994), 643-666.
MR 1280649
[9] Ševčovič D.:
Limiting behavior of global attractors for singularly perturbed beam equations with strong damping. Comment. Math. Univ. Carolinae 32 (1991), 45-60.
MR 1118289
[10] Sviridyuk G.A.:
The Deborah number and a class of semilinear equations of Sobolev type (English translation). Soviet. Math. Doklady 44 No.1 (1992), 297-301.
MR 1152892
[11] Sviridyuk G.A., Sukacheva T.G.:
Cauchy problem for a class of semilinear equations of Sobolev type (English translation). Sibirskii Matem. Zhurnal 31 No.5 (1990), 120-127.
MR 1088921
[12] Vanderbauwhede A., Van Gils V.A.:
Center manifolds and contraction on a scale of Banach spaces. J. of Funct. Analysis 72 (1987), 209-224.
MR 0886811