Previous |  Up |  Next

Article

Keywords:
non-associative binary systems
Summary:
Term substitution induces an associative operation on the free objects of any equational variety. In the case of left distributivity, the construction can be extended to any monogenic structure.
References:
[1] Dehornoy P.: Infinite products in monoids. Semigroup Forum 34 (1986), 21-68. MR 0863838 | Zbl 0601.20061
[2] Dehornoy P.: The adjoint representation of a left distributive magma. Comm. in Algebra 20 -4 (1992), 1201-1215. MR 1154409
[3] Dehornoy P.: A Normal Form for the Free Left Distributive Law. Int. J. for Algebra & Computation, to appear. MR 1313125 | Zbl 0827.20079
[4] Dehornoy P.: From Large Cardinals to Braids via Distributive Algebra. preprint, 1994. MR 1321290 | Zbl 0873.20030
[5] Drápal A.: Homomorphisms of primitive left distributive groupoids. Comm. in Algebra 22 -7 (1994), 2579-2592. MR 1271624
[6] Drápal A.: On the semigroup structure of cyclic left distributive algebras. preprint, 1993, to appear in Semigroup Forum. MR 1336995
[7] Drápal A.: Finite Left Distributive Algebras with One Generator. preprint, 1994. MR 1477609
[8] El Bashir R., Drápal A.: Quasitrivial left distributive groupoids. preprint, 1993.
[9] Kepka T: Notes on left distributive groupoids. Acta Univ. Carolinae 22 -2 (1981), 21-37. MR 0654379 | Zbl 0517.20048
[10] Laver R.: On the algebra of elementary embeddings of a rank into itself. Advances in Math., to appear. MR 1317621 | Zbl 0822.03031
Partner of
EuDML logo