Previous |  Up |  Next

Article

Keywords:
equivariant completion; factorization; dimension
Summary:
An important consequence of a result of Katětov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact $\sigma$-compact acting group.
References:
[1] Bourbaki N.: General Topology, Parts 1, 2. Hermann Paris (1966).
[2] Bourbaki N.: Topologie Générale, Ch. IX,X. Hermann Paris (1958). MR 0173226
[3] Bronstein I.U.: Extensions of Minimal Transformation Groups. Sijthoff & Noordhoff, Alphen aan den Rijn, 1979. MR 0550605
[4] Brook R.B.: A construction of the greatest ambit. Math. Systems Theory 4 (1970), 243-248. MR 0267038
[5] Dikranjan D.N., Prodanov I.R., Stoyanov L.N.: Topological Groups: Characters, Dualities and Minimal Group Topologies. Marcel Dekker: Pure Appl. Math. 130 (1989). MR 1015288
[6] Engelking R.: General Topology. P.W.N., Warszawa (1977). MR 0500780 | Zbl 0373.54002
[7] de Groot J.: The action of a locally compact group on a metric space. Nieuw Arch. Wisk. (3) 7 (1959), 70-74. MR 0124434 | Zbl 0092.02802
[8] de Groot J., Mcdowell R.H.: Extension of mappings on metric spaces. Fund. Math. 68 (1960), 251-263. MR 0124026 | Zbl 0100.18903
[9] Isbell J.: Uniform Spaces. AMS, Providence, Rhode Island (1964). MR 0170323 | Zbl 0124.15601
[10] Katětov M.: On the dimension of non-separable spaces I. Czech. Math. J. 2 (1952), 333-368. MR 0061372
[11] Megrelishvili M.: Quasibounded uniform $G$-spaces (in Russian). Manuscript deposited at Gruz. NIINTI (Tbilisi) on March 3, 1987, No.331-G.
[12] Megrelishvili M.: A Tychonoff $G$-space not admitting a compact Hausdorff $G$-extension or $G$-linearization. Russ. Math. Surv. 43:2 (1988), 177-178. MR 0940673
[13] Megrelishvili M.: Compactification and factorization in the category of $G$-spaces. Categorical Topology and its Relation to Analysis, Algebra and Combinatorics J. Adámek, S. MacLane World Scientific Singapore (1989), 220-237. MR 1047903
[14] Morita K.: Normal families and dimension theory in metric spaces. Math. Ann. 128, N4 (1954), 143-156. MR 0065906
[15] Peters J., Sund T.: Automorphisms of locally compact groups. Pacific J. Math. 76 (1978), 143-146. MR 0578732 | Zbl 0354.22010
[16] de Vries J.: Universal topological transformation groups. General Topology and its Applications 5 (1975), 107-122. MR 0372834 | Zbl 0299.54030
[17] de Vries J.: Topological Transformation Groups I: A Categorical Approach. Math. Centre Tract 65 Mathematisch Centrum, Amsterdam (1975). MR 0415586
[18] de Vries J.: On the existence of $G$-compactifications. Bull. Ac. Polon. Sci. Ser. Math. 26 (1978), 275-280. MR 0644661 | Zbl 0378.54028
Partner of
EuDML logo