Article
Keywords:
small Dowker space; Dowker product; normality; countable paracompactness; measurable cardinal; Covering Lemma
Summary:
We prove that if there is a model of set-theory which contains no first countable, locally compact, scattered, countably paracompact space $X$, whose Tychonoff square is a Dowker space, then there is an inner model which contains a measurable cardinal.
References:
[B1] Bešlagić A.:
A Dowker product. Trans. Amer. Math. Soc. 292 (1985), 519-530.
MR 0808735
[B2] Bešlagić A.:
Another Dowker product. Top. Appl. 36 (1990), 553-264.
MR 1070704
[B3] Bešlagić A.:
Yet another Dowker product. preprint.
MR 1261168
[Dv] Devlin K.:
Constructability. Springer Verlag Berlin (1984).
MR 0750828
[F] Fleissner W.G.:
The normal Moore space conjecture and large cardinals. {in: [KV]} 733-760.
MR 0776635 |
Zbl 0562.54039
[K] Kunen K.:
Set Theory, An Introduction to Independence Proofs. North Holland Amsterdam (1984).
MR 0756630
[KV] Kunen K., Vaughan J.E. eds.:
Handbook of Set-Theoretic Topology. North Holland Amsterdam (1984).
MR 0776619 |
Zbl 0546.00022
[RS] Rudin M.E., Starbird M.:
Products with a metric factor. Gen. Top. Appl. 5 1975 235-248.
MR 0380709 |
Zbl 0305.54010