Previous |  Up |  Next

Article

Keywords:
Čech-Stone compactification; cardinal invariants
Summary:
We prove that every compact space $X$ is a Čech-Stone compactification of a normal subspace of cardinality at most $d(X)^{t(X)}$, and some facts about cardinal invariants of compact spaces.
References:
[1] Fedorchuk V.V.: Vpolne zamknutye otobrazhenija. Matem. sbornik 99:1 (1976), 3-33.
[2] Arhangelskii A.V.: Stroenie i klassifikacija topologicheskich prostranstv i kardinalnye invarianty. Uspekhi mat. nauk 33:6 (1978), 29-84. MR 0526012
[3] Pasynkov B.A.: O teoreme E. Čecha. Vest. MGU 6 (1979), 54-57. MR 0561409
[4] Gryzlov A.A.: On cardinal invariants of compact spaces. Abstr. Baku Intern. Top. Conf., 1987, p. 89.
[5] Šapirovskii B.E.: O vlozhenii ekstremalno-normalnyh prostranstv v bikompakty. Dokl. Akad. Nauk SSSR 223:5 (1975), 1083-1086. MR 0394609
[6] Šapirovskii B.E.: O nasledstvenno normalnykh prostranstvah. Abstr. VII Vses. Top. Conf. Minsk, 1977, p. 204.
[7] Arhangelskii A.V.: O moschnosti bikompaktov s pervoi aksiomoi schetnosti. Dokl. Akad. Nauk SSSR 187 (1969), 967-970. MR 0251695
Partner of
EuDML logo