[1] Anichini G.:
Nonlinear problems for systems of differential equations. Nonlinear Anal.-TMA 1 (1977), 691-699.
MR 0592963 |
Zbl 0388.34011
[2] Benamara M.: Points Extremaux, Multi-applications et Fonctionelles Intégrales. Thèse du 3ème cycle, Université de Grenoble, 1975.
[5] Kartsatos A.:
Locally invertible operators and existence problems in differential systems. Tohoku Math. Jour. 28 (1976), 167-176.
MR 0430385 |
Zbl 0356.34019
[7] Konishi Y.:
Compacité des résolvantes des opérateurs maximaux cycliquement monotones. Proc. Japan Acad. 49 (1973), 303-305.
MR 0346600 |
Zbl 0272.47034
[8] Papageorgiou N.S.:
On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation. J. Multiv. Anal. 17 (1985), 185-206.
MR 0808276
[9] Papageorgiou N.S.:
Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433-442.
MR 0896595 |
Zbl 0619.28009
[10] Papageorgiou N.S.:
On multivalued evolution equations and differential inclusions in Banach spaces. Comm. Math. Univ. S.P. 36 (1987), 21-39.
MR 0892378 |
Zbl 0641.47052
[11] Papageorgiou N.S.:
Boundary value problems for evolution inclusions. Comment. Math. Univ. Carolinae 29 (1988), 355-363.
MR 0957404 |
Zbl 0696.35074
[12] Papageorgiou N.S.:
On evolution inclusion associated with time dependent convex subdifferentials. Comment. Math. Univ. Carolinae 31 (1990), 517-527.
MR 1078486
[13] Pavel N.:
Nonlinear Evolution Operators and Semigroups. Lecture Notes in Math. 1260, Springer, Berlin, 1987.
MR 0900380 |
Zbl 0626.35003
[14] Tanabe H.: Equations in Evolution. Pitman, London, 1979.
[15] Tolstonogov A.:
Extreme continuous selectors of multivalued maps and the ``bang-bang'' principle for evolution inclusions. Soviet Math. Doklady 317 (1991), 481-485.
MR 1121349
[16] Wagner D.:
Survey of measurable selection theorems. SIAM J. Control. Optim. 15 (1977), 859-903.
MR 0486391 |
Zbl 0407.28006
[17] Zecca P., Zezza P.:
Nonlinear boundary value problems in Banach spaces for multivalued differential equations on a non-compact interval. Nonlinear Anal.-TMA 3 (1979), 347-352.
MR 0532895