Previous |  Up |  Next

Article

Keywords:
evolution operator; multifunction; Hausdorff metric; extremal solution; periodic solution; Fredholm alternative; control system; parabolic system
Summary:
We consider boundary value problems for semilinear evolution inclusions. We establish the existence of extremal solutions. Using that result, we show that the evolution inclusion has periodic extremal trajectories. These results are then applied to closed loop control systems. Finally, an example of a semilinear parabolic distributed parameter control system is worked out in detail.
References:
[1] Anichini G.: Nonlinear problems for systems of differential equations. Nonlinear Anal.-TMA 1 (1977), 691-699. MR 0592963 | Zbl 0388.34011
[2] Benamara M.: Points Extremaux, Multi-applications et Fonctionelles Intégrales. Thèse du 3ème cycle, Université de Grenoble, 1975.
[3] Diestel J., Uhl J.: Vector Measures. Math. Surveys, Vol. 15, AMS, Providence, RI, 1977. MR 0453964 | Zbl 0521.46035
[4] Himmelberg C.: Measurable relations. Fund. Math. 87 (1975), 57-91. MR 0367142 | Zbl 0296.28003
[5] Kartsatos A.: Locally invertible operators and existence problems in differential systems. Tohoku Math. Jour. 28 (1976), 167-176. MR 0430385 | Zbl 0356.34019
[6] Klein E., Thompson A.: Theory of Correspondences. Wiley, New York, 1984. MR 0752692 | Zbl 0556.28012
[7] Konishi Y.: Compacité des résolvantes des opérateurs maximaux cycliquement monotones. Proc. Japan Acad. 49 (1973), 303-305. MR 0346600 | Zbl 0272.47034
[8] Papageorgiou N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation. J. Multiv. Anal. 17 (1985), 185-206. MR 0808276
[9] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433-442. MR 0896595 | Zbl 0619.28009
[10] Papageorgiou N.S.: On multivalued evolution equations and differential inclusions in Banach spaces. Comm. Math. Univ. S.P. 36 (1987), 21-39. MR 0892378 | Zbl 0641.47052
[11] Papageorgiou N.S.: Boundary value problems for evolution inclusions. Comment. Math. Univ. Carolinae 29 (1988), 355-363. MR 0957404 | Zbl 0696.35074
[12] Papageorgiou N.S.: On evolution inclusion associated with time dependent convex subdifferentials. Comment. Math. Univ. Carolinae 31 (1990), 517-527. MR 1078486
[13] Pavel N.: Nonlinear Evolution Operators and Semigroups. Lecture Notes in Math. 1260, Springer, Berlin, 1987. MR 0900380 | Zbl 0626.35003
[14] Tanabe H.: Equations in Evolution. Pitman, London, 1979.
[15] Tolstonogov A.: Extreme continuous selectors of multivalued maps and the ``bang-bang'' principle for evolution inclusions. Soviet Math. Doklady 317 (1991), 481-485. MR 1121349
[16] Wagner D.: Survey of measurable selection theorems. SIAM J. Control. Optim. 15 (1977), 859-903. MR 0486391 | Zbl 0407.28006
[17] Zecca P., Zezza P.: Nonlinear boundary value problems in Banach spaces for multivalued differential equations on a non-compact interval. Nonlinear Anal.-TMA 3 (1979), 347-352. MR 0532895
Partner of
EuDML logo