Previous |  Up |  Next

Article

Keywords:
$\omega$-limit sets; stationary points; the Poincar'{e}-Bendixon theorem
Summary:
In this paper the $\omega$-limit behaviour of trajectories of solutions of ordinary differential equations is studied by methods of an axiomatic theory of solution spaces. We prove, under very general assumptions, semi-invariance of $\omega$-limit sets and a Poincar'{e}-Bendixon type theorem.
References:
[1] Artstein Z.: Limiting equations and stability of nonautonomous ordinary differential equations. Appendix A in: J.P. LaSalle, {The stability of dynamical systems}, CBMS Regional Conference Series in Applied Mathematics, vol. 25, SIAM, Philadelphia, 1976. MR 0481301 | Zbl 0364.93002
[2] Artstein Z.: Topological dynamics of ordinary differential equations and Kurzweil equations. J. Differential Equations 23 (1977), 224-243. MR 0432985 | Zbl 0353.34044
[3] Artstein Z.: The limiting equations of nonautonomous ordinary differential equations. J. Differential Equations 25 (1977), 184-202. MR 0442381 | Zbl 0358.34045
[4] Artstein Z.: Uniform asymptotic stability via the limiting equations. J. Differential Equations 27 (1978), 172-189. MR 0466795 | Zbl 0383.34037
[5] Coddington E.A., Levinson N.: Theory of ordinary differential equations. McGraw-Hill, New York, 1955. MR 0069338 | Zbl 0064.33002
[6] Davy J.L.: Properties of the solution set of a generalized differential equation. Bull. Austral. Math. Soc. 6 (1972), 379-398. MR 0303023 | Zbl 0239.49022
[7] Engelking R.: General Topology. PWN, Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[8] Fedorchuk V.V., Filippov V.V.: General Topology. Basic Constructions (in Russian). Moscow University Press, Moscow, 1988.
[9] Filippov V.V.: On the theory of solution spaces of ordinary differential equations (in Russian). Dokl. Akad. Nauk SSSR 285 (1985), 1073-1077; English translation: Soviet Math. Dokl. 32 (1985), 850-854. MR 0820601
[10] Filippov V.V.: On the ordinary differential equations with singularities in the right-hand side (in Russian). Mat. Zametki 38 (1985), 832-851; English translation: Math. Notes 38 (1985), 964-974. MR 0823421
[11] Filippov V.V.: Cauchy problem theory for an ordinary differential equation from the point of view of general topology (in Russian). General Topology. Mappings of Topological Spaces, Moscow University Press, Moscow, 1986, 131-164. MR 1080764
[12] Filippov V.V.: On stationary points and some geometric properties of solutions of ordinary differential equations (in Russian). Ross. Acad. Nauk Dokl. 323 (1992), 1043-1047; English translation: Russian Acad. Sci. Dokl. Math. 45 (1992), 497-501. MR 1202308
[13] Filippov V.V.: On the Poincaré-Bendixon theorem and compact families of solution spaces of ordinary differential equations (in Russian). Mat. Zametki 53 (1993), 140-144. MR 1220821
[14] Hartman P.: Ordinary differential equations. Wiley, New York, 1964. MR 0171038 | Zbl 1009.34001
[15] Kluczny C.: Sur certaines familles de courbes en relation avec la théorie des équations différentielles ordinaires I, II. Annales Universitatis M. Curie-Skłodowska, Sec. A, Math. 15 (1961) 13-40; 16 (1962) 5-18.
[16] Markus L.: Asymptotically autonomous differential systems. Contributions to the Theory of Nonlinear Oscillations, vol. III, Annals of Math. Stud. 36, Princeton University Press, N.J., 1956, 17-29. MR 0081388 | Zbl 0075.27002
[17] Miller R.K.: Asymptotic behavior of solutions of nonlinear differential equations. Trans. Amer. Math. Soc. 115 (1965), 400-416. MR 0199502 | Zbl 0137.28202
[18] Saks S.: Theory of the integral. PWN, Warsaw, 1937. Zbl 0017.30004
[19] Savel'ev P.N.: On the Poincaré-Bendixon theorem and dissipativity in the plane (in Russian). Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1991, no. 3, 69-71; English translation: Moscow Univ. Math. Bull. 46 (1991), no. 3, 54-55. MR 1204259
[20] Sell G.R.: Nonautonomous differential equations and topological dynamics I, II. Trans. Amer. Math. Soc. 127 (1967), 241-283. MR 0212313
[21] Strauss A., Yorke J.A.: On asymptotically autonomous differential equations. Math. Systems Theory 1 (1967), 175-182. MR 0213666 | Zbl 0189.38502
[22] Thieme H.R.: Convergence results and a Poincaré-Bendixon trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30 (1992), 755-763. MR 1175102
[23] Yorke J.A.: Spaces of solutions. Mathematical Systems Theory and Economics, Vol. II, Lecture Notes in Operations Research and Mathematical Economics, vol. 12, Springer-Verlag, New York, 1969, 383-403. MR 0361294 | Zbl 0188.15502
[24] Zaremba S.K.: Sur certaines familles de courbes en relation avec la théorie des équations différentielles. Ann. Soc. Polon. Math. 15 (1936), 83-100.
Partner of
EuDML logo