[1] Artstein Z.:
Limiting equations and stability of nonautonomous ordinary differential equations. Appendix A in: J.P. LaSalle, {The stability of dynamical systems}, CBMS Regional Conference Series in Applied Mathematics, vol. 25, SIAM, Philadelphia, 1976.
MR 0481301 |
Zbl 0364.93002
[2] Artstein Z.:
Topological dynamics of ordinary differential equations and Kurzweil equations. J. Differential Equations 23 (1977), 224-243.
MR 0432985 |
Zbl 0353.34044
[3] Artstein Z.:
The limiting equations of nonautonomous ordinary differential equations. J. Differential Equations 25 (1977), 184-202.
MR 0442381 |
Zbl 0358.34045
[4] Artstein Z.:
Uniform asymptotic stability via the limiting equations. J. Differential Equations 27 (1978), 172-189.
MR 0466795 |
Zbl 0383.34037
[5] Coddington E.A., Levinson N.:
Theory of ordinary differential equations. McGraw-Hill, New York, 1955.
MR 0069338 |
Zbl 0064.33002
[6] Davy J.L.:
Properties of the solution set of a generalized differential equation. Bull. Austral. Math. Soc. 6 (1972), 379-398.
MR 0303023 |
Zbl 0239.49022
[8] Fedorchuk V.V., Filippov V.V.: General Topology. Basic Constructions (in Russian). Moscow University Press, Moscow, 1988.
[9] Filippov V.V.:
On the theory of solution spaces of ordinary differential equations (in Russian). Dokl. Akad. Nauk SSSR 285 (1985), 1073-1077; English translation: Soviet Math. Dokl. 32 (1985), 850-854.
MR 0820601
[10] Filippov V.V.:
On the ordinary differential equations with singularities in the right-hand side (in Russian). Mat. Zametki 38 (1985), 832-851; English translation: Math. Notes 38 (1985), 964-974.
MR 0823421
[11] Filippov V.V.:
Cauchy problem theory for an ordinary differential equation from the point of view of general topology (in Russian). General Topology. Mappings of Topological Spaces, Moscow University Press, Moscow, 1986, 131-164.
MR 1080764
[12] Filippov V.V.:
On stationary points and some geometric properties of solutions of ordinary differential equations (in Russian). Ross. Acad. Nauk Dokl. 323 (1992), 1043-1047; English translation: Russian Acad. Sci. Dokl. Math. 45 (1992), 497-501.
MR 1202308
[13] Filippov V.V.:
On the Poincaré-Bendixon theorem and compact families of solution spaces of ordinary differential equations (in Russian). Mat. Zametki 53 (1993), 140-144.
MR 1220821
[15] Kluczny C.: Sur certaines familles de courbes en relation avec la théorie des équations différentielles ordinaires I, II. Annales Universitatis M. Curie-Skłodowska, Sec. A, Math. 15 (1961) 13-40; 16 (1962) 5-18.
[16] Markus L.:
Asymptotically autonomous differential systems. Contributions to the Theory of Nonlinear Oscillations, vol. III, Annals of Math. Stud. 36, Princeton University Press, N.J., 1956, 17-29.
MR 0081388 |
Zbl 0075.27002
[17] Miller R.K.:
Asymptotic behavior of solutions of nonlinear differential equations. Trans. Amer. Math. Soc. 115 (1965), 400-416.
MR 0199502 |
Zbl 0137.28202
[18] Saks S.:
Theory of the integral. PWN, Warsaw, 1937.
Zbl 0017.30004
[19] Savel'ev P.N.:
On the Poincaré-Bendixon theorem and dissipativity in the plane (in Russian). Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1991, no. 3, 69-71; English translation: Moscow Univ. Math. Bull. 46 (1991), no. 3, 54-55.
MR 1204259
[20] Sell G.R.:
Nonautonomous differential equations and topological dynamics I, II. Trans. Amer. Math. Soc. 127 (1967), 241-283.
MR 0212313
[21] Strauss A., Yorke J.A.:
On asymptotically autonomous differential equations. Math. Systems Theory 1 (1967), 175-182.
MR 0213666 |
Zbl 0189.38502
[22] Thieme H.R.:
Convergence results and a Poincaré-Bendixon trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30 (1992), 755-763.
MR 1175102
[23] Yorke J.A.:
Spaces of solutions. Mathematical Systems Theory and Economics, Vol. II, Lecture Notes in Operations Research and Mathematical Economics, vol. 12, Springer-Verlag, New York, 1969, 383-403.
MR 0361294 |
Zbl 0188.15502
[24] Zaremba S.K.: Sur certaines familles de courbes en relation avec la théorie des équations différentielles. Ann. Soc. Polon. Math. 15 (1936), 83-100.