Article
Keywords:
injective; precovers; preenvelopes; canonical module; Cohen-Macaulay; \newline $n$-Gorenstein; resolvent; resolutions
Summary:
In this paper, we use a characterization of $R$-modules $N$ such that $fd_RN = pd_RN$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting $N$ to be the $dth$ local cohomology functor of $R$ with respect to the maximal ideal where $d$ is the Krull dimension of $R$.
References:
[1] Auslander M., Buchweitz R.:
The homological theory of maximal Cohen-Macaulay approximations. Soc. Math. de France, Memoire 38 (1989), 5-37.
MR 1044344 |
Zbl 0697.13005
[3] Enochs E., Jenda O.:
Copure injective resolutions, flat resolvents and dimensions. Comment. Math. Univ. Carolinae 34 (1993), 202-211.
MR 1241728 |
Zbl 0780.18006
[4] Enochs E., Jenda O.:
Balanced functors applied to modules. J. Algebra 92 (1985), 303-310.
MR 0778450 |
Zbl 0554.18006
[5] Foxby H.-B.:
Isomorphisms between complexes with applications to the homological theory of modules. Math. Scand. 40 (1977), 5-19.
MR 0447269 |
Zbl 0356.13004
[7] Herzog J., Kunz E.:
Der Kanonische Modul eines Cohen-Macaulay-Rings. Lecture Notes in Mathematics 238, Springer, 1971.
MR 0412177 |
Zbl 0231.13009
[8] Ishikawa T.:
On injective modules and flat modules. Math. Soc. Japan 17 (1965), 291-296.
MR 0188272 |
Zbl 0199.07802
[9] Jensen C.:
Les foncteurs dérivées de $\lim _{\leftarrow}$ et leurs applications en théorie des modules. Lecture Notes in Mathematics 254, Springer, 1972.
MR 0407091
[11] Roberts P.:
Homological invariants of modules over commutative rings. Semin. Math. Super. 15, Presses Univ. Montreal, 1980.
MR 0569936 |
Zbl 0467.13007
[12] Strooker J.:
Homological questions in local algebra. London Math. Soc. Lecture Note Series 145, Cambridge Univ. Press, 1990.
MR 1074178 |
Zbl 0786.13008
[13] Yoshino Y.:
Cohen-Macaulay modules over Cohen-Macaulay rings. London Math. Soc. Lecture Note Series 146, Cambridge Univ. Press, 1990.
MR 1079937 |
Zbl 0745.13003