Previous |  Up |  Next

Article

Keywords:
orthomodular lattice; subadditive probability measure
Summary:
We investigate subadditive measures on orthomodular lattices. We show as the main result that an orthomodular lattice has to be distributive (=Boolean) if it possesses a unital set of subadditive probability measures. This result may find an application in the foundation of quantum theories, mathematical logic, or elsewhere.
References:
[1] Beran L.: Orthomodular Lattices (Algebraic Approach). Academia, Prague, 1984. MR 0785005 | Zbl 0558.06008
[2] Birkhoff G.: Lattice Theory. 2nd edition, Amer. Math. Soc. Colloq. Publ., New York, 1948. MR 0029876 | Zbl 0537.06001
[3] Foulis D.J.: A note on orthomodular lattices. Portugal. Math. 21 (1962), 65-72. MR 0148581 | Zbl 0106.24302
[4] Greechie R.J.: Orthomodular lattices admitting no states. Jour. Comb. Theory 10 (1971), 119-132. MR 0274355 | Zbl 0219.06007
[5] Gudder S.P.: Stochastic Methods in Quantum Mechanics. North-Holland, Amsterdam, 1979. MR 0543489 | Zbl 0439.46047
[6] Kalmbach G.: Orthomodular Lattices. Academic Press, London, 1983. MR 0716496 | Zbl 0554.06009
[7] Majerník V., Pulmannová S.: Bell inequalities on quantum logics. Jour. Math. Phys. 33 (6) (1992), 2173-2178. MR 1164328
[8] Müller V.: Jauch-Piron states on concrete quantum logics. Int. Jour. Theor. Phys. 32 (1993), 433-442. MR 1213098
[9] Pták P.: Exotic logics. Colloquium Math., Vol. LIV (1987), 1-7. MR 0928651
[10] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht-Boston-London, 1991. MR 1176314
[11] Riečanová Z.: Topology in a quantum logic induced by a measure. Proc. Conf. Topology and Measure V, Greifswald (1988), 126-130. MR 1029570
[12] Rüttimann G., Wright J.D.M.: Kalmbach outer measures and evaluations. to appear.
[13] Sarymsakov T., Ajupov S., Khadzhiev D., Chilin V.: Ordered Algebras (in Russian). Filial AN, Tashkent, 1983.
Partner of
EuDML logo