Previous |  Up |  Next

Article

Keywords:
random measure; point process; conditional intensity; absolute continuity; martingales
Summary:
We prove the existence of the conditional intensity of a random measure that is absolutely continuous with respect to its mean; when there exists an L$^{p}$-intensity, $p>1$, the conditional intensity is obtained at the same time almost surely and in the mean.
References:
[1] Billingsley P.: Probability and Measure. Wiley, 1979. MR 0534323 | Zbl 0822.60002
[2] Kallenberg O.: On conditional intensities of point processes. Z. Wahrsch. Verw. Geb. 41 (1978), 205-220. MR 0461654 | Zbl 0349.60056
[3] Kallenberg O.: L$_p$ intensities of random measures, stochastic processes and their applications. Stoch. Proc. and Appl. 9 (1979), 155-161. MR 0548835
[4] Kallenberg O.: Random Measures. Academic Press, 1983. MR 0818219 | Zbl 0694.60030
[5] Kopp P.E: Martingales and Stochastic Integrals. Cambridge University Press, 1984. MR 0774050 | Zbl 1152.60043
[6] Papangelou F.: The conditional intensity of general point processes and an application to line processes. Z. Wahrsch. Verw. Geb. 28 (1974), 207-226. MR 0373000 | Zbl 0265.60047
[7] Papangelou F.: Point processes on spaces of flats and other homogeneous spaces. Math. Proc. Cambridge Phil. Soc. 80 (1976), 297-314. MR 0410845 | Zbl 0342.60042
[8] Varsei A.: Ph.D. thesis. 1978.
Partner of
EuDML logo