Previous |  Up |  Next

Article

Keywords:
fixed points; Bessaga mappings; Jano\v s mappings; Picard mappings
Summary:
In this paper we generalize the well known converse to the contraction principle due to C. Bessaga, dropping the uniqueness of the fixed point from its hypotheses. Some properties of weakly Picard mappings are given.
References:
[1] Barbuti U., Guerra S.: Osservazioni sopra una nota precedente. Rend. Ist. di Matem. Univ. Trieste 3 (1971), 1-12. MR 0313892
[2] Bellen A.: Non-cyclic transformation and uniform convergence of the Picard sequences. Rend. Ist. di Matem. Univ. Trieste 4 (1972), 1-7. MR 0336725
[3] Bessaga C.: On the converse of the Banach fixed point principle. Colloq. Math. 7 (1959), 41-43. MR 0111015 | Zbl 0089.31501
[4] Browder F.E., Petryshyn W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Amer. Soc. 72 (1966), 571-575. MR 0190745 | Zbl 0138.08202
[5] Belluce L.P., Kirk W.A.: Some fixed point theorems in metric and Banach spaces. Canad. Math. Bull. 12 (1969), 481-491. MR 0250148 | Zbl 0195.42901
[6] Coroian L.: $\alpha _{DP}$-condensing mappings. Univ. of Cluj-Napoca, Preprint No. 3, 1988, 17-22. MR 0975265
[7] Iseki K.: Fixed point theorems in generalized complete metric space. Tamkang J. Math. 5 (1974), 213-219. MR 0365542
[8] Janoš L.: A converse of the Banach's contraction theorem. Proc. Amer. Math. Soc. 18 (1967), 287-289. MR 0208589
[9] Janoš L., Ko H.-M., Tan K.-K.: Edelstein's contractivity and attractors. Proc. Amer. Math. Soc. 76 (1979), 339-344. MR 0537101 | Zbl 0411.54031
[10] Leader S.: Uniformly contractive fixed points in compact metric spaces. Proc. Amer. Math. Soc. 86 (1982), 153-158. MR 0663887 | Zbl 0507.54040
[11] Meyers P.R.: A converse to Banach's contraction theorem. J. Res. Nat. Bureau of Standard 71B (1971), 73-76. MR 0221469
[12] Opoijcev W.I.: The converse of the contraction mapping principle (in Russian). Usp. Mat. Nauk 31 (1976), 169-198. MR 0420591
[13] Rhoades B.E.: Contractive definitions revisited. Contemporary Math. 21 (1983), 189-205. MR 0729516 | Zbl 0528.54037
[14] Rus I.A.: Principii şi aplicaţii ale teoriei punctului fix. Ed. Dacia, Cluj-Napoca, 1979.
[15] Rus I.A.: Generalized contractions. Univ. Cluj-Napoca, Preprint No. 3, 1983, 1-30. MR 0782679
[16] Rus I.A.: Bessaga mappings. Proc. Colloq. Approx. Optimization, Cluj-Napoca, 1984, 165-175. MR 0847265 | Zbl 0572.54040
[17] Rus I.A.: Picard mappings: results and problems. Univ. Cluj-Napoca, Preprint No. 6, 1987, 55-64. MR 0993513 | Zbl 0654.54030
[18] Rus I.A.: Picard mappings I. Studia Univ. Babeş-Bolyai 33 (1988), 70-73. MR 1004822 | Zbl 0672.47049
[19] Rus I.A.: Basic problems of the metric fixed point theory revisited. Studia Univ. Babeş-Bolyai 34 (1989), 61-69. MR 1073756 | Zbl 0878.54028
[20] Rus I.A., Mureşan A.S.: Examples and counterexamples for Janoš mappings. Univ. Cluj-Napoca, Preprint No. 3, 1984, 63-66. MR 0807962
[21] Tan K.-K.: Remark on contraction mappings. Boll. U.M.I. 9 (1974), 23-27. MR 0358750 | Zbl 0295.54054
[22] Volčič A.: Some remarks on a S. Chu and R.D. Moyer's theorem. Rend. Accad. Naz. Lincei 49 (1970), 236-241. MR 0295325
Partner of
EuDML logo