[1] Adamec R., Klazar M., Valtr P.:
Generalized Davenport-Schinzel sequences with linear upper bound. Discrete Math. 108 (1992), 219-229.
MR 1189846 |
Zbl 0768.05007
[2] Agarwal P.K., Sharir M., Shor P.:
Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences. J. Comb. Theory A 52 (1989), 228-274.
MR 1022320 |
Zbl 0697.05003
[3] Davenport H., Schinzel A.:
A combinatorial problem connected with differential equations. Amer. J. Math. 87 (1965), 684-689.
MR 0190010 |
Zbl 0132.00601
[4] Davenport H.:
A combinatorial problem connected with differential equations II. Acta Arith. 17 (1971), 363-372.
MR 0285401 |
Zbl 0216.30204
[5]
Graphs and Orders. (I. Rival, ed.) D. Reidel Publishing Company, Dordrecht, 1985.
MR 0818494
[6] Hart S., Sharir M.:
Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes. Combinatorica 6 (1986), 151-177.
MR 0875839 |
Zbl 0636.05003
[7] Higman H.:
Orderi divisibility in abstract algebras. Proc. London Math. Society 2 (1952), 326-336.
MR 0049867
[8] Klazar M.:
A general upper bound in Extremal theory of sequences. Comment. Math. Univ. Carolinae 33 (1992), 737-747.
MR 1240196 |
Zbl 0781.05049
[9] Klazar M., Valtr P.: Linear sequences. submitted.
[11] Nash-Williams C.St.J.A.:
On well-quasi-ordering finite trees. Math. Proc. Cambridge Philos. Soc. 59 (1963), 833-835.
MR 0153601 |
Zbl 0122.25001
[12] Robertson N., Seymour P.:
Graph minors-a survey. Surveys in Combinatorics (Glasgow 1985) (I. Anderson, ed.), Cambridge Univ. Press, 153-171.
MR 0822774 |
Zbl 0568.05025
[13] Sharir M.:
Almost linear upper bounds on the length of general Davenport-Schinzel sequences. Combinatorica 7 (1987), 131-143.
MR 0905160 |
Zbl 0636.05004
[14] Szemerédi E.:
On a problem by Davenport and Schinzel. Acta Arith. 25 (1974), 213-224.
MR 0335463
[15] Wiernik A., Sharir M.:
Planar realization of nonlinear Davenport-Schinzel. Discrete Comput. Geometry 3 (1988), 15-47.
MR 0918177