Previous |  Up |  Next

Article

Keywords:
Nielsen fixed point theory; perturbations; nondegenerate manifolds
Summary:
The existence of multiple solutions for perturbed equations is shown near a manifold of solutions of an unperturbed equation via the Nielsen fixed point theory.
References:
[1] Fečkan M.: Nielsen fixed point theory and nonlinear equations. to appear in Journal Differential Equations.
[2] Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems. in Appl. Math. Sci., Vol. 74 (1989). MR 0982267 | Zbl 0676.58017
[3] Brown R.F.: Topological identification of multiple solutions to parametrized nonlinear equations. Pacific J. Math. 131 (1988), 51-69. MR 0917865 | Zbl 0615.47042
[4] Golubitsky M., Guillemin V.: Stable Mappings and their Singularities. Springer-Verlag New York (1973). MR 0341518 | Zbl 0294.58004
[5] Jiang B.: Lectures on Nielsen Fixed Point Theory. in Contemporary Math., Vol 14 (1983). MR 0685755 | Zbl 0512.55003
[6] Dancer E.N.: The G-invariant implicit function theorem in infinite dimensions II. Proc. Royal Soc. Edinburgh 102 A, (1986), 211-220. MR 0852355 | Zbl 0601.58013
[7] Ambrosetti A., Bessi U.: Multiple closed orbits for perturbed Keplerian problems. Journal Differential Equations 96 (1992), 283-94. MR 1156662 | Zbl 0759.34033
[8] Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag New York (1983). MR 0709768 | Zbl 0515.34001
[9] Fečkan M.: Problems with nonlinear boundary value conditions. Comment. Math. Univ. Carolinae 33 (1992), 597-604. MR 1240180
[10] Hirsch M.W.: Differential Topology. Springer-Verlag New York (1976). MR 0448362 | Zbl 0356.57001
Partner of
EuDML logo