Article
Keywords:
Nielsen fixed point theory; perturbations; nondegenerate manifolds
Summary:
The existence of multiple solutions for perturbed equations is shown near a manifold of solutions of an unperturbed equation via the Nielsen fixed point theory.
References:
[1] Fečkan M.: Nielsen fixed point theory and nonlinear equations. to appear in Journal Differential Equations.
[2] Mawhin J., Willem M.:
Critical Point Theory and Hamiltonian Systems. in Appl. Math. Sci., Vol. 74 (1989).
MR 0982267 |
Zbl 0676.58017
[3] Brown R.F.:
Topological identification of multiple solutions to parametrized nonlinear equations. Pacific J. Math. 131 (1988), 51-69.
MR 0917865 |
Zbl 0615.47042
[4] Golubitsky M., Guillemin V.:
Stable Mappings and their Singularities. Springer-Verlag New York (1973).
MR 0341518 |
Zbl 0294.58004
[6] Dancer E.N.:
The G-invariant implicit function theorem in infinite dimensions II. Proc. Royal Soc. Edinburgh 102 A, (1986), 211-220.
MR 0852355 |
Zbl 0601.58013
[7] Ambrosetti A., Bessi U.:
Multiple closed orbits for perturbed Keplerian problems. Journal Differential Equations 96 (1992), 283-94.
MR 1156662 |
Zbl 0759.34033
[8] Guckenheimer J., Holmes P.:
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag New York (1983).
MR 0709768 |
Zbl 0515.34001
[9] Fečkan M.:
Problems with nonlinear boundary value conditions. Comment. Math. Univ. Carolinae 33 (1992), 597-604.
MR 1240180