Previous |  Up |  Next

Article

Keywords:
singular homology; homotopy; excision; topos; interval
Summary:
In this paper we extend the Eilenberg-Steenrod axiomatic description of a homology theory from the category of topological spaces to an arbitrary category and, in particular, to a topos. Implicit in this extension is an extension of the notions of homotopy and excision. A general discussion of such homotopy and excision structures on a category is given along with several examples including the interval based homotopies and, for toposes, the excisions represented by ``cutting out'' subobjects. The existence of homology theories on toposes depends upon their internal logic. It is shown, for example, that all ``reasonable'' homology theories on a topos in which De Morgan's law holds are trivial. To obtain examples on non-trivial homology theories we consider singular homology based on a cosimplicial object. For toposes singular homology satisfies all the axioms except, possibly, excision. We introduce a notion of ``tightness'' and show that singular homology based on a sufficiently tight cosimplicial object satisfies the excision axiom. Cha\-rac\-terizations of various types of tight cosimplicial objects in the functor topos $\text{\rm Sets}^C$ are given and, as a result, a general method for constructing non-trivial homology theories is obtained. We conclude with several explicit examples.
References:
[1] Artin E., Braun H.: Introduction to algebraic topology. Merrill Publ., Columbus, Ohio, 1969. MR 0247624 | Zbl 0181.51201
[2] Bing R.H.: A connected, countable, Hausdorff space. Proceedings of A.M.S., Vol. 4, No. 3, 1953, p. 474. MR 0060806 | Zbl 0051.13902
[3] Dold A.: Lectures on algebraic topology. Band 200, Springer Verlag, 1980. MR 0606196 | Zbl 0872.55001
[4] Dugundji J.: Topology. Allyn and Bacon, Inc., Boston, 1966. MR 0193606 | Zbl 0397.54003
[5] Duskin J.: Simplicial methods and the interpretation of ``triple'' cohomology. Memoirs of the A.M.S., Vol. 3, Issue 2, No. 163, 1975. MR 0393196 | Zbl 0376.18011
[6] Eilenberg S., Steenrod N.: Foundations of algebraic topology. Princeton University Press, Princeton, N.J., 1952. MR 0050886 | Zbl 0047.41402
[7] Gabriel P., Zisman M.: Calculus of fractions and homotopy theory. Springer-Verlag, New York, 1967. MR 0210125 | Zbl 0231.55001
[8] Greenberg M.J., Harper J.R.: Algebraic topology. Benjamin/Cummings Publ. Co., Reading, Mass., 1981. MR 0643101 | Zbl 0498.55001
[9] Grothendieck A.: Eléments de géométrie algébrique. I.H.E.S. Publications mathématiques, No. 4, 1960. Zbl 0203.23301
[10] Herrlich H.: Topological functors. General Topology and Appl. 4 (1974), 125-142. MR 0343226 | Zbl 0288.54003
[11] Hu S.T.: Homology theory. Holden-Day, Inc., San Francisco, 1966. MR 0217786
[12] Johnstone P.T.: Topos theory. L.M.S. Math Monograph, No. 10, Academic Press, 1977. MR 0470019 | Zbl 1071.18002
[13] Johnstone P.T.: Conditions related to De Morgan's law. in: Applications of Sheaves, Springer Lecture Notes, No. 753, 1979, pp. 47l9-491. MR 0555556 | Zbl 0445.03041
[14] Johnstone P.T.: Another condition equivalent to De Morgan's law. Communications in Algebra 7 (1979), 1309-1312. MR 0538331 | Zbl 0417.18002
[15] Johnstone P.T.: On a topological topos. Proc. London Math. Soc. 38 (1979), 237-271. MR 0531162 | Zbl 0402.18006
[16] Lamotke K.: Semisimpliziale algebraische Topologie. (Die Grundlehren der mathematischen Wissenschaften) Vol. 147, Springer-Verlag, Berlin and New York, 1968. MR 0245005 | Zbl 0188.28301
[17] MacLane S.: Homology. Academic Press, New York, and Springer-Verlag, Berlin and New York, 1963. MR 0156879 | Zbl 0149.26203
[18] MacLane S.: Categories for working mathematician. Springer-Verlag, New York, Heidelberg, Berlin, 1971. MR 0354798
[19] May J.P.: Simplicial objects in algebraic topology. Van Nostrand Math. Studies, No. 11, Van Nostrand, New York, 1967. MR 0222892 | Zbl 0769.55001
[20] Mielke M.V.: The interval in algebraic topology. Ill. J. Math. 25 (1981), 1-62. MR 0602895 | Zbl 0425.55010
[21] Mielke M.V.: Exact intervals. Ill. J. Math. 25 (1981), 593-597. MR 0630836 | Zbl 0444.55017
[22] Mielke M.V.: Convenient categories for internal singular algebraic topology. Ill. J. Math. 27 (1983), 519-534. MR 0698313 | Zbl 0496.55006
[23] Mielke M.V.: Homotopically trivial toposes. Pacific J. of Math. 110 (1984), 171-182. MR 0722748 | Zbl 0488.55015
[24] Pare R., Schumacher D.: Abstract families and the adjoint functor theorems. Springer Lecture Notes in Math. 661, 1978. MR 0514193 | Zbl 0389.18002
[25] Spanier E.H.: Algebraic topology. McGraw-Hill, New York, 1966. MR 0210112 | Zbl 0810.55001
[26] Switzer R.M.: Algebraic topology - homotopy and homology. Band 212, Springer-Verlag, Berlin and New York, 1975. MR 0385836 | Zbl 0629.55001
[27] Vick J.W.: Homology theory. Academic Press, New York, 1973. MR 0375279 | Zbl 0789.55004
[28] Wallace A.H.: Algebraic topology. Pergamon Press, Oxford, 1961. Zbl 1121.55002
[29] Wyler O.: Are there topoi in topology. Springer Lecture Notes in Math. 540 (1975), 700-719. MR 0458346 | Zbl 0354.54001
Partner of
EuDML logo