Previous |  Up |  Next

Article

Keywords:
frame; uniform frame; quasi-uniform frame; quasi-proximity; totally bounded quasi-uniformity; uniformly regular ideal; compactification; bicompletion
Summary:
This paper considers totally bounded quasi-uniformities and quasi-proximities for frames and shows that for a given quasi-proximity $\triangleleft $ on a frame $L$ there is a totally bounded quasi-uniformity on $L$ that is the coarsest quasi-uniformity, and the only totally bounded quasi-uniformity, that determines $\triangleleft $. The constructions due to B. Banaschewski and A. Pultr of the Cauchy spectrum $\psi L$ and the compactification $\Re L$ of a uniform frame $(L, {\bold U})$ are meaningful for quasi-uniform frames. If ${\bold U}$ is a totally bounded quasi-uniformity on a frame $L$, there is a totally bounded quasi-uniformity $\overline{{\bold U}}$ on $\Re L$ such that $(\Re L, \overline{{\bold U}})$ is a compactification of $(L,{\bold U})$. Moreover, the Cauchy spectrum of the uniform frame $(Fr({\bold U}^{\ast }), {\bold U}^{\ast })$ can be viewed as the spectrum of the bicompletion of $(L,{\bold U})$.
References:
[1] Banaschewski B., Brümmer G.C.L.: Strong zero-dimensionality of biframes and bispaces. Quaestiones Math. 13 (1990), 273-290. MR 1084742
[2] Banaschewski B., Brümmer G.C.L., Hardie K.A.: Biframes and bispaces. Quaestiones Math. 6 (1983), 13-25. MR 0700237
[3] Banaschewski B., Pultr A.: Samuel compactification and completion of uniform frames. Math. Proc. Camb. Phil. Soc. (1) 108 (1990), 63-78. MR 1049760 | Zbl 0733.54020
[4] Dowker C.H.: Mappings of proximity structures. ``General Topology and its Relations to Modern Analysis and Algebra'', (Proc. Sympos. Prague 1961), Academic Press, New York, 1962, 139-141 Publ. House Czech. Acad. Sci., Prague, 1962. MR 0146792 | Zbl 0114.14101
[5] Fletcher P., Hunsaker W.: Entourage uniformities for frames. Monatsh. Math. 112 (1991), 271-279. MR 1141095 | Zbl 0736.54023
[6] Fletcher P., Hunsaker W.: Symmetry conditions in terms of open sets. Topology and its Appl. 45 (1992), 39-47. MR 1169075 | Zbl 0766.54025
[7] Fletcher P., Hunsaker W., Lindgren W.: Characterizations of Frame Quasi-Uniformities. preprint. Zbl 0792.54026
[8] Fletcher P., Hunsaker W., Lindgren W.: Frame Quasi-Uniformities. preprint. Zbl 0796.54037
[9] Fletcher P., Lindgren W.: Quasi-Uniform Spaces. Marcel Dekker, New York and Basel, 1982. MR 0660063 | Zbl 0583.54017
[10] Frith J.L.: Structured Frames. Ph.D. Thesis, Univ. Cape Town, 1987.
[11] Gantner T.E., Steinlage R.C.: Characterizations of quasi-uniformities. J. London Math. Soc. (2) 5 (1972), 48-52. MR 0380741 | Zbl 0241.54023
[12] Hunsaker W., Lindgren W.F.: Construction of quasi-uniformities. Math. Ann. 188 (1970), 39-42. MR 0266149 | Zbl 0187.44602
[13] Isbell J.R.: Uniform Spaces. Mathematical Surveys, No. 12, Amer. Math. Soc., Providence, R.I., 1964. MR 0170323 | Zbl 0124.15601
[14] Johnstone P.T.: Stone Spaces. Cambridge Univ. Press, Cambridge, 1982. MR 0698074 | Zbl 0586.54001
[15] Nachbin L.: Sur les espaces uniformes ordonnés. C.R. Acad. Sci., Paris 226 (1948), 774-775. MR 0024120 | Zbl 0030.37303
[16] Pultr A.: Pointless uniformities I. Complete regularity. Comment Math. Univ. Carolinae 25 (1984), 91-104. MR 0749118 | Zbl 0543.54023
Partner of
EuDML logo