Article
Keywords:
periodic-Dirichlet problem; semilinear heat equation; superlinear growth
Summary:
The existence of weak solution for periodic-Dirichlet problem to semilinear heat equations with superlinear growth non-linear term is treated.
References:
[1] Brezis H., Nirenberg L.:
Characterization of the range of some nonlinear operators and application to boundary value problem. Ann. Scuola Norm Pisa (4) 5 (1978), 225-326.
MR 0513090
[2] Fučík S.:
Solvability of Nonlinear Equations and Boundary Value Problems. Pediel, Dordrecht, 1980.
MR 0620638
[3] Nkashama M.N., Willem M.:
Periodic solutions of the boundary value problem for the nonlinear heat equation. Bull. Austral. Math. Soc. 29 (1984), 99-110.
MR 0753565 |
Zbl 0555.35062
[4] Sanchez L.:
A note on periodic solutions of heat equation with a superlinear term. Nonlinear Functional Anal. and its Appl., S.P. Singh (ed.), D. Reidel Publ. Co., 1986.
MR 0852596 |
Zbl 0611.35046
[5] Šťastnová, Fučík S.:
Note to periodic solvability of the boundary value problem for nonlinear heat equation. Comment. Math. Univ. Carolinae 18 (1977), 735-740.
MR 0499739
[6] Vejvoda O. and al.: Partial Differential Equations, Time Periodic Solutions. Sijthoff Noordhoff, 1981.