[2] Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V.:
Topological methods in the theory of fixed points of multivalued mappings. Russian Math. Surveys 35 (1980), 65-143.
MR 0565568
[3] Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V.: Multivalued mappings. J. Sov. Math. (1984), 719-791.
[4] Bourgin D.G.:
A degree for nonacyclic multiple-valued transformation. Bull. Amer. Math. Soc. 80 (1974), 59-61.
MR 0326505
[5] Bourgin D.G.:
A generalization of the mapping degree. Can. J. Math. 26 (1974), 1109-1117.
MR 0365552 |
Zbl 0303.55004
[6] Connelly R.:
An extension of Brower's fixed-point theorem to nonacyclic, set-valued functions. Proc. Amer. Math. Soc. 43 (1974), 214-218.
MR 0339144
[7] Dzedzey Z.: Fixed point index theory for a class of nonacyclic multivalued maps. Diss. Math. CCLIII (1985).
[8] Eilenberg S., Montgomery D.:
Fixed point theorems for multivalued transformations. Amer. J. Math. 58 (1946), 214-222.
MR 0016676 |
Zbl 0060.40203
[9] Fan K.:
Sur un théorème minimax. C. R. Acad. Sci. Paris, Groupe 1, 259 (1962), 3925-3928.
MR 0174955
[10] Gorniewicz L.:
Fixed point theorems for multivalued maps of subsets of Euclidean spaces. Bull. Pol. Acad. Sci., Math. 27 (1979), 111-115.
MR 0539341
[11] Granas A.: K K M-maps and their applications to non linear problems. see 16, 45-61.
[12] Hadžic O.:
Fixed point theory in topological vector spaces. University of Novi Sad, Novi Sad, 1984.
MR 0789224
[13] Idzik A.:
On $\gamma-$almost fixed point theorems. The single valued case. Bull. Pol. Acad. Sci. Math. 35 (1987), 461-464.
MR 0939008 |
Zbl 0663.47036
[14] Kalton N.J.:
An $F$-space with trivial dual where the Krein-Milman theorem holds. Israel J. Math. 36 (1980), 41-49.
MR 0589656 |
Zbl 0439.46022
[15] Krauthausen C.: Der Fixpunktsatz von Schauder in nicht notwendig Konvexen Räumen sowie Anwendungen auf Hammerstein'sche Gleichungen. Dissertation, TH Aachen, 1976.
[16] Mauldin R.D. editor:
The Scottish Book. Birkhäuser, 1981.
MR 0666400
[17] O'Neill B.: A fixed point theorem for multivalued functions. Duke Math. J. 24 (1957), 61-62.
[18] O'Neill B.:
Induced homology homomorphism for set-valued maps. Pac. J. Math. 7 (1957), 1179-1184.
MR 0104226
[19] Powers M.J.:
Lefschetz fixed point theorems for a new class of multivalued maps. Pac. J. Math. 42 (1972), 211-220.
MR 0334189
[20] Schauder J.: Der Fixpunktsatz in Funktionalräumen. Studia Math. 2 (1930), 171-180.
[22] Weber H.:
Compact convex sets in non locally convex linear spaces. to appear in Note Mat., 1992.
MR 1258580 |
Zbl 0846.46004