Previous |  Up |  Next

Article

Keywords:
compact convex set; fixed point property; multivalued map; local convexity; topological vector space; Schauder Conjecture.
Summary:
Schauder's Conjecture (i.e\. every compact convex set in a Hausdorff topological vector space has the f.p.p.) is reduced to the search for fixed points of suitable multivalued maps in finite dimensional spaces.
References:
[1] Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhäuser, 1990. MR 1048347 | Zbl 1168.49014
[2] Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V.: Topological methods in the theory of fixed points of multivalued mappings. Russian Math. Surveys 35 (1980), 65-143. MR 0565568
[3] Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V.: Multivalued mappings. J. Sov. Math. (1984), 719-791.
[4] Bourgin D.G.: A degree for nonacyclic multiple-valued transformation. Bull. Amer. Math. Soc. 80 (1974), 59-61. MR 0326505
[5] Bourgin D.G.: A generalization of the mapping degree. Can. J. Math. 26 (1974), 1109-1117. MR 0365552 | Zbl 0303.55004
[6] Connelly R.: An extension of Brower's fixed-point theorem to nonacyclic, set-valued functions. Proc. Amer. Math. Soc. 43 (1974), 214-218. MR 0339144
[7] Dzedzey Z.: Fixed point index theory for a class of nonacyclic multivalued maps. Diss. Math. CCLIII (1985).
[8] Eilenberg S., Montgomery D.: Fixed point theorems for multivalued transformations. Amer. J. Math. 58 (1946), 214-222. MR 0016676 | Zbl 0060.40203
[9] Fan K.: Sur un théorème minimax. C. R. Acad. Sci. Paris, Groupe 1, 259 (1962), 3925-3928. MR 0174955
[10] Gorniewicz L.: Fixed point theorems for multivalued maps of subsets of Euclidean spaces. Bull. Pol. Acad. Sci., Math. 27 (1979), 111-115. MR 0539341
[11] Granas A.: K K M-maps and their applications to non linear problems. see 16, 45-61.
[12] Hadžic O.: Fixed point theory in topological vector spaces. University of Novi Sad, Novi Sad, 1984. MR 0789224
[13] Idzik A.: On $\gamma-$almost fixed point theorems. The single valued case. Bull. Pol. Acad. Sci. Math. 35 (1987), 461-464. MR 0939008 | Zbl 0663.47036
[14] Kalton N.J.: An $F$-space with trivial dual where the Krein-Milman theorem holds. Israel J. Math. 36 (1980), 41-49. MR 0589656 | Zbl 0439.46022
[15] Krauthausen C.: Der Fixpunktsatz von Schauder in nicht notwendig Konvexen Räumen sowie Anwendungen auf Hammerstein'sche Gleichungen. Dissertation, TH Aachen, 1976.
[16] Mauldin R.D. editor: The Scottish Book. Birkhäuser, 1981. MR 0666400
[17] O'Neill B.: A fixed point theorem for multivalued functions. Duke Math. J. 24 (1957), 61-62.
[18] O'Neill B.: Induced homology homomorphism for set-valued maps. Pac. J. Math. 7 (1957), 1179-1184. MR 0104226
[19] Powers M.J.: Lefschetz fixed point theorems for a new class of multivalued maps. Pac. J. Math. 42 (1972), 211-220. MR 0334189
[20] Schauder J.: Der Fixpunktsatz in Funktionalräumen. Studia Math. 2 (1930), 171-180.
[21] Tychonoff A.: Ein Fixpunktsatz. Math. Ann. 111 (1935), 767-776. MR 1513031 | Zbl 0012.30803
[22] Weber H.: Compact convex sets in non locally convex linear spaces. to appear in Note Mat., 1992. MR 1258580 | Zbl 0846.46004
Partner of
EuDML logo