[1] Agmon S.:
On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15 (1962), 119-147.
MR 0147774 |
Zbl 0109.32701
[2] Agmon S., Douglis A., Nirenberg L.:
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12 (1959), 623-727; II, ibid. 17 (1964), 35-92.
MR 0125307 |
Zbl 0093.10401
[3] Andrews G.:
On the existence of solutions to the equation: $u_{tt} = u_{xxt} + \sigma(u_x)_x$. J. Diff. Eqns. 35 (1980), 200-231.
MR 0561978 |
Zbl 0415.35018
[4] Andrews G., Ball J.M.:
Asymptotic behaviour and changes in phase in one-dimensional nonlinear viscoelasticity. J. Diff. Eqns. 44 (1982), 306-341.
MR 0657784
[5] Ang D.D., Dinh A.P.N.:
On the strongly damped wave equation: $u_{tt} - \Delta u - \Delta u_t + f(u) = 0$. SIAM J. Math. Anal. 19 (1988), 1409-1418.
MR 0965260
[6] Aviles P., Sandefur J.:
Nonlinear second order equations with applications to partial differential equations. J. Diff. Eqns. 58 (1985), 404-427.
MR 0797319 |
Zbl 0572.34004
[7] Bardos C., Lebeau G., Rauch J:
Contrôle et stabilisation dans les problèmes hyperboliques. Appendix II in J.L. Lions Contrôlabilité exacte, perturbations et stabilisation de systémes distribués, I, Contrôlabilité exacte Masson, RMA 8, 1988.
MR 0953547
[8] Bardos C., Lebeau G., Rauch J:
Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. submitted to SIAM. J. Cont. Optim.
Zbl 0786.93009
[9] Chen G.:
Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. pures et appl. 58 (1976), 249-273.
MR 0544253
[10] Chrzȩszczyk A.:
Some existence results in dynamical thermoelasticity. Part I. Nonlinear Case. Arch. Mech. 39 (1987), 605-617.
MR 0976929
[11] Cleménts J.:
Existence theorems for a quasilinear evolution equation. SIAM J. Appl. Math. 26 (1974), 745-752.
MR 0372426
[12] Cleménts J.:
On the existence and uniqueness of solutions of the equation $u_{tt} - (\partial/\partial x_i)\sigma_i(u_{x_i}) - \Delta_Nu_t = f$. Canad. Math. Bull. 18 (1975), 181-187.
MR 0397200
[13] Dafermos C.M.:
On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rational Mech. Anal. 29 (1968), 241-271.
MR 0233539 |
Zbl 0183.37701
[14] Dafermos C.M.:
The mixed initial-boundary value problem for the equations of non-linear one-dimensional visco-elasticity. J. Diff. Eqns. 6 (l969), 71-86.
MR 0241831
[15] Dafermos C.M., Hsiao L.:
Development of singularities in solutions of the equations of nonlinear thermoelasticity. Quart. Appl. Math. 44 (1986), 463-474.
MR 0860899 |
Zbl 0661.35009
[16] Dan W.:
On a local in time solvability of the Neumann problem of quasilinear hyperbolic parabolic coupled systems. preprint, 1992.
MR 1357364 |
Zbl 0841.35003
[17] Dassios G., Grillakis M.:
Dissipation rates and partition of energy in thermoelasticity. Arch. Rational Mech. Anal. 87 (1984), 49-91.
MR 0760319 |
Zbl 0563.73007
[18] Ebihara Y.:
On some nonlinear evolution equations with the strong dissipation. J. Diff. Eqns. 30 (1978), 149-164 II ibid. 34 (1979), 339-352 III ibid. 45 (1982), 332-355.
MR 0513267
[19] Ebihara Y.:
Some evolution equations with the quasi-linear strong dissipation. J. Math. pures et appl. 58 (1987), 229-245.
MR 0539221
[20] Engler H.:
Strong solutions for strongly damped quasilinear wave equations. Contemporary Math. 64 (1987), 219-237.
MR 0881465 |
Zbl 0638.35054
[21] Feireisl E.:
Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem. Comment. Math. Univ. Carolinae 31 (1990), 243-255.
MR 1077895 |
Zbl 0718.73013
[22] Friedman A., Nečas J.:
Systems of nonlinear wave equations with nonlinear viscosity. Pacific J. Math. 135 (1988), 29-55.
MR 0965683
[23] Greenberg J.M.:
On the existence, uniqueness, and stability of the equation $\rho_0X_{tt} = E(X_x)X_{xx} + X_{xxt}$. J. Math. Anal. Appl. 25 (1969), 575-591.
MR 0240473
[24] Greenberg J.M., Li Ta-tsien:
The effect of boundary damping for the quasilinear wave equation. J. Diff. Eqns. 52 (1984), 66-75.
MR 0737964
[25] Greenberg J.M., MacCamy R.C., Mizel J.J.: On the existence, uniqueness, and stability of the equation $\sigma^{\prime} (u_x)u_{xx} - \lambda u_{xxt} = \rho_0u_{tt}$. J. Math. Mech. 17 (1968), 707-728.
[26] Godin P.: Private communication in 1992.
[27] Hrusa W.J., Messaoudi S.A.:
On formation of singularities in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal. 111 (1990), 135-151.
MR 1057652 |
Zbl 0712.73023
[28] Hrusa W.J., Tarabek M.A.:
On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity. Quart. Appl. Math. 47 (1989), 631-644.
MR 1031681 |
Zbl 0692.73005
[29] Jiang S.:
Global existence of smooth solutions in one- dimensional nonlinear thermoelasticity. Proc. Roy. Soc. Edinburgh 115A (1990), 257-274.
MR 1069521 |
Zbl 0723.35044
[30] Jiang S.:
Far field behavior of solutions to the equations of nonlinear 1-d-thermoelasticity. Appl. Anal. 36 (1990), 25-35.
MR 1040876 |
Zbl 0672.35011
[31] Jiang S.:
Rapidly decreasing behaviour of solutions in nonlinear 3-D-thermo-elasticity. Bull. Austral. Math. Soc. 43 (1991), 89-99.
MR 1086721
[32] Jiang S.: Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity. SFB 256 Preprint 138, Universität Bonn, 1990.
[33] Jiang S.:
Global solutions of the Neumann problem in one-dimensional nonlinear thermoelasticity. to appear in Nonlinear TMA.
MR 1174462 |
Zbl 0786.73009
[34] Jiang S., Racke R.:
On some quasilinear hyperbolic-parabolic initial boundary value problems. Math. Meth. Appl. Sci. 12 (1990), 315-339.
MR 1048561 |
Zbl 0706.35098
[35] Kawashima S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Thesis, Kyoto University, 1983.
[36] Kawashima S., Okada M.:
Smooth global solutions for the one-dimensional equations in magnetohydrodynamics. Proc. Japan Acad. Ser. A. 53 (1982), 384-387.
MR 0694940 |
Zbl 0522.76098
[37] Kawashima S., Shibata Y.:
Global existence and exponential stability of small solutions to nonlinear viscoelasticity. to appear in Commun. Math. Phys.
MR 1178142 |
Zbl 0779.35066
[38] Kawashima S., Shibata Y.:
On the Neumann problem of one-dimensional nonlinear thermoelasticity with time- independent external forces. preprint, 1992.
MR 1314530
[39] Klainerman S., Majda A.:
Formation of singularities for wave equations including the nonlinear vibrating string. Pure Appl. Math. 33 (1980), 241-263.
MR 0562736 |
Zbl 0443.35040
[40] Kobayashi T., Pecher H., Shibata Y.:
On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity. preprint, 1992.
MR 1219900 |
Zbl 0788.35001
[41] Lagnese J.:
Boundary stabilization of linear elastodynamic systems. SIAM J. Control Optim. 21 (1983), 968-984.
MR 0719524 |
Zbl 0531.93044
[42] MacCamy R.C., Mizel V.J.:
Existence and nonexistence in the large of solutions of quasilinear wave equations. Arch. Rational Mech. Anal. 25 (1967), 299-320.
MR 0216165 |
Zbl 0146.33801
[43] Matsumura A.:
Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with first order dissipation. Publ. RIMS Kyoto Univ. Ser. A 13 (1977), 349-379.
MR 0470507
[44] Mizohata K., Ukai S.:
The global existence of small amplitude solutions to the nonlinear acoustic wave equation. preprint, 1991, Dep. of Information Sci. Tokyo Inst. of Tech.
MR 1231754 |
Zbl 0794.35108
[45] Nagasawa T.:
On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary. J. Diff. Eqns. 65 (1986), 49-67.
MR 0859472 |
Zbl 0598.34021
[46] Pecher H.:
On global regular solutions of third order partial differential equations. J. Math. Anal. Appl. 73 (1980), 278-299.
MR 0560948 |
Zbl 0429.35057
[47] Ponce G.:
Global existence of small solutions to a class of nonlinear evolution equation. Nonlinear Anal. TMA 9 (1985), 399-418.
MR 0785713
[48] Ponce G., Racke R.:
Global existence of small solutions to the initial value problem for nonlinear thermoelasticity. J. Diff. Eqns. 87 (1990), 70-83.
MR 1070028 |
Zbl 0725.35065
[49] Potier-Ferry M.:
On the mathematical foundation of elastic stability, I. Arch. Rational Mech. Anal. 78 (1982), 55-72.
MR 0654552
[50] Qin T.:
The global smooth solutions of second order quasilinear hyperbolic equations with dissipation boundary condition. Chinese Anals Math. 9B (1988), 251-269.
MR 0968461
[51] Quinn J.P., Russell D.L.:
Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping. Proc. Roy. Soc. Edinburgh 77A (1977), 97-127.
MR 0473539 |
Zbl 0357.35006
[52] Rabinowitz P.:
Periodic solutions of nonlinear partial differential equations. Commun. Pure Appl. Math. 20 (1967), 145-205 II ibid. 22 (1969), 15-39.
MR 0206507
[53] Racke R.:
On the Cauchy problem in nonlinear 3-d-thermoelasticity. Math. Z. 203 (1990), 649-682.
MR 1044071 |
Zbl 0701.73002
[54] Racke R.:
Blow-up in nonlinear three-dimensional thermoelasticity. Math. Meth. Appl. Sci. 12 (1990), 267-273.
MR 1043758 |
Zbl 0705.35081
[55] Racke R.: Mathematical aspects in nonlinear thermoelasticity. SFB 256 Lecture Note Series { 25}, 1992.
[56] Racke R.:
Lectures on nonlinear evolution equation. Initial value problems. Ser. ``Aspects of Mathematics'', Fridr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1992.
MR 1158463
[57] Racke R., Shibata Y.:
Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal. 116 (1991), 1-34.
MR 1130241 |
Zbl 0756.73012
[58] Racke R., Shibata Y., Zheng S.:
Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity. to appear in Quart. Appl. Math.
MR 1247439 |
Zbl 0804.35132
[59] Rybka P.:
Dynamical modelling of phase transitions by means of viscoelasticity in many dimensions. to appear in Proc. Roy. Soc. Edinburgh 121A (1992).
MR 1169897 |
Zbl 0758.73004
[60] Shibata Y.:
Neumann problem for one-dimensional nonlinear thermoelasticity. to appear in Banach Center Publication.
MR 1205848
[61] Shibata Y, Nakamura G.:
On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order. Math. Z. 202 (1989), 1-64.
MR 1007739
[62] Shibata Y., Kikuchi M.:
On the mixed problem for some quasilinear hyperbolic system with fully nonlinear boundary condition. J. Diff. Eqns. 80 (1989), 154-197.
MR 1003254 |
Zbl 0689.35055
[63] Shibata Y., Zheng S.:
On some nonlinear hyperbolic systems with damping boundary conditions. Nonlinear Anal. TMA 17 (1991), 233-266.
MR 1120976 |
Zbl 0772.35031
[64] Slemrod M.:
Global existence, uniqueness, and asymptotic stability of classical smooth solutions in the one-dimensional non-linear thermoelasticity. Arch. Rational Mech. Anal. 76 (1981), 97-133.
MR 0629700
[65] Tanabe H.:
Equations of evolution. Monographs and Studies in Mathematics, Pitman, London, San Francisco, Melbourne, l979.
Zbl 0417.35003
[66] Webb G.F.:
Existence and asymptotic behavior for a strongly damped nonlinear wave equation. Canada J. Math. 32 (1980), 631-643.
MR 0586981 |
Zbl 0414.35046
[67] Yamada Y.:
Some remarks on the equation $u_{tt} - \sigma(y_x)y_{xx} -y_{xtx} = f$. Osaka J. Math. 17 (1980), 303-323.
MR 0587752
[68] Zheng S.:
Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled systems. Sci. Sinica Ser. A 27 (1984), 1274-1286.
MR 0794293 |
Zbl 0581.35056
[69] Zheng S., Shen W.:
Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems. Sci. Sinica Ser. A 3 (1987), 1133-1149.
MR 0942420 |
Zbl 0649.35013
[70] Zuazua E.:
Stability and decay for a class of nonlinear hyperbolic problems. Asymptotic Anal. 1 (1988), 161-185.
MR 0950012 |
Zbl 0677.35069