Previous |  Up |  Next

Article

Keywords:
preenvelopes; copure injective; copure flat; $n$-Gorenstein; resolutions
Summary:
In this paper, we show the existence of copure injective preenvelopes over noetherian rings and copure flat preenvelopes over commutative artinian rings. We use this to characterize $n$-Gorenstein rings. As a consequence, if the full subcategory of strongly copure injective (respectively flat) modules over a left and right noetherian ring $R$ has cokernels (respectively kernels), then $R$ is $2$-Gorenstein.
References:
[1] Auslander M., Bridger M.: Stable module theory. Memories of the Amer. Math. Soc. 94 (1969), 1-146. MR 0269685 | Zbl 0204.36402
[2] Bernecker H.: Flatness and absolute purity applying functor categories to ring theory. J. Algebra 44 (1977), 411-419. MR 0432707 | Zbl 0352.18020
[3] Enochs E.: Injective and flat covers, envelopes and resolvents. Israel J. Math. 39 (1981), 189-209. MR 0636889 | Zbl 0464.16019
[4] Enochs E., Jenda O.: Balanced functors applied to modules. J. Algebra 92 (1985), 303-310. MR 0778450 | Zbl 0554.18006
[5] Enochs E., Jenda O.: Resolvents and dimensions of modules and rings. Arch. Math. 56 (1991), 528-532. MR 1106493 | Zbl 0694.16012
[6] Enochs E., Jenda O.: Copure injective modules. Quaest. Mathematicae 14 (1991), 401-409. MR 1143044 | Zbl 0747.16003
[7] Gabriel P.: Objects injectifs dans les catégories abéliennes. Sém. Dubreil, 1958/59, 17/01-17/32, Paris, 1960. Zbl 0214.03301
[8] Iwanaga Y.: On rings with finite self-injective dimension II. Tsukuba J. Math. 4 (1980), 107-113. MR 0597688 | Zbl 0459.16011
[9] Jenda O.: The dual of the grade of a module. Arch. Math. 51 (1988), 297-302. MR 0964954 | Zbl 0632.16018
[10] Jensen C.: Les foncteurs derives de $øverset {\lim}\to {\longleftarrow}$ et leurs applications en theorie des modules. Lecture Notes in Mathematics 254, Springer, 1972. MR 0407091
[11] Lenzing H.: Endlich präsentierbare modulen. Arch. Math. 20 (1969), 262-266. MR 0244322
Partner of
EuDML logo