Previous |  Up |  Next

Article

Keywords:
Besov spaces; Harish-Chandra-Fourier series
Summary:
In the paper we investigate the absolute convergence in the sup-norm of Harish-Chandra's Fourier series of functions belonging to Besov spaces defined on non-compact connected Lie groups.
References:
[1] Chavel I.: Eigenvalues in Riemannian Geometry. Academic Press, New York, 1984. MR 0768584 | Zbl 0551.53001
[2] Harish-Chandra: Discrete series for semi-simple Lie groups II. Acta Math. 116 (1966), 1-111. MR 0219666
[3] Price J.F.: Lie Groups and Compact Groups. University Press, Cambridge, 1979. MR 0450449 | Zbl 0348.22001
[4] Robinson D.W.: Lie groups and Lipschitz spaces. Duke J. Math. 57 (1988), 357-395. MR 0962512 | Zbl 0687.46024
[5] Robinson D.W.: Lipschitz operators. J. Funct. Anal. 85 (1989), 179-211. MR 1005861 | Zbl 0705.47037
[6] Schmeisser H.J., Triebel H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester, 1987. MR 0891189 | Zbl 0661.46025
[7] Skrzypczak L.: Traces of function spaces $F_{p,q}^s- B_{p,q}^s$ type on submanifolds. Math. Nachr. 146 (1990), 137-147. MR 1069056
[8] Triebel H.: Diffeomorphism properties and pointwise multiplier for function spaces. in: Function Spaces, Proc. Inter. Conf. Poznań 1986, Teubner-Texte, Leipzig, 1988, 75-84. MR 1066519
[9] Triebel H.: Function spaces on Lie groups, the Riemannian approach. J. London Math. Soc. 35 (1987), 327-338. MR 0881521 | Zbl 0587.46036
[10] Triebel H.: How to measure smoothness of distributions on Riemannian symmetric manifolds and Lie groups?. Zeitsch. Anal. ihre Anwend. 7 (1988), 471-480. MR 0977967
[11] Triebel H.: Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds. Ark. Mat. 24 (1986), 299-337. MR 0884191 | Zbl 0664.46026
[12] Triebel H.: Theory of Function Spaces. Birkhäuser, Basel, 1983. MR 0781540 | Zbl 1104.46001
[13] Warner B.: Harmonic Analysis on Semi-simple Lie groups I. Springer-Verlag, Berlin, 1972. MR 0498999 | Zbl 0265.22020
Partner of
EuDML logo