Previous |  Up |  Next

Article

Keywords:
measurable multifunction; set-valued conditional expectation; Levy's theorem; support function; Kuratowski-Mosco convergence of sets
Summary:
In this paper we prove two convergence theorems for set-valued conditional expectations. The first is a set-valued generalization of Levy's martingale convergence theorem, while the second involves a nonmonotone sequence of sub $\sigma $-fields.
References:
[1] Alo R., deKorvin A., Roberts R.: The optional sampling theorem for convex set valued martingales. J. Reine Angew. Math. 310 (1979), 1-6. MR 0546661
[2] Artstein Z., Hart S.: Law of large numbers for random sets and allocation processes. Math. Oper. Res. 6 (1981), 485-492. MR 0703091 | Zbl 0524.28015
[3] Attouch H.: Famille d'opérateurs maximaux monotones et mesurabilité. Ann. Mat. Pura ed Appl. 120 (1979), 35-111. MR 0551062
[4] Diestel J. Uhl J.: Vector Measures. Math. Surveys, vol. 15, AMS, Providence, RI, 1977. MR 0453964
[5] Dynkin E., Evstigneev I.: Regular conditional expectations of correspondences. Theory of Prob. and Appl. 21 (1976), 325-338. MR 0430204 | Zbl 0367.60002
[6] Fetter H.: On the continuity of conditional expectations. J. Math. Anal. Appl. 61 (1977), 227-231. MR 0455110 | Zbl 0415.60003
[7] Hanen A., Neveu J.: Atomes conditionels d'un espace de probabilité. Acta Math. Hungarica 17 (1966), 443-449. MR 0205285
[8] Hess C.: Measurability and integrability of the weak upper limit of a sequence of multifunctions. J. Math. Anal. Appl. 153 (1990), 206-249. MR 1080128 | Zbl 0748.47046
[9] Hiai F.: Radon-Nikodym theorems for set-valued measures. J. Multiv. Anal. 8 (1978), 96-118. MR 0583862 | Zbl 0384.28006
[10] Hiai F., Umegaki H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multiv. Anal. 7 (1977), 149-182. MR 0507504 | Zbl 0368.60006
[11] deKorvin A., Kleyle R.: A convergence theorem for convex set-valued supermartingales. Stoch. Anal. Appl. 3 (1985), 433-445. MR 0808943
[12] Luu D.Q.: Quelques resultats de representation des amarts uniforms multivoques. C.R. Acad. Su. Paris 300 (1985), 63-63.
[13] Metivier M.: Semimartingales. DeGruyter, Berlin 1982. MR 0688144 | Zbl 0595.60008
[14] Mosco U.: Convergence of convex sets and solutions of variational inequalities. Advances in Math. 3 (1969), 510-585. MR 0298508
[15] Papageorgiou N.S.: On the efficiency and optimality of allocations II. SIAM J. Control Optim. 24 (1986), 452-479. MR 0838050 | Zbl 0589.90015
[16] Papageorgiou N.S.: Convergence theorem for Banach space valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433-442. MR 0896595
[17] Papageorgiou N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation. J. Multiv. Anal. 17 (1985), 185-206. MR 0808276
[18] Papageorgiou N.S.: On the theory of Banach space valued multifunctions. Part 2: Set valued martingales and set valued measures. J. Multiv. Anal. 17 (1985), 207-227. MR 0808277
[19] Papageorgiou N.S.: A convergence theorem for set-valued supermartingales in a separable Banach space. Stoch. Anal. Appl. 5 (1988), 405-422. MR 0912867
[20] Papageorgiou N.S., Kandilakis D.: Convergence in approximation and nonsmooth analysis. J. Approx. Theory 49 (1987), 41-54. MR 0870548 | Zbl 0619.41033
[21] Salinetti G. Wets R.: On the convergence of sequences of convex sets in finite dimensions. SIAM Review 21 (1979), 18-33. MR 0516381
[22] Thibault L.: Esperances conditionelles d'integrandes semicontinus. Ann. Inst. H. Poincaré Ser. B 17 (1981), 337-350. MR 0644351
[23] Wagner D.: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859-903. MR 0486391 | Zbl 0407.28006
Partner of
EuDML logo