Previous |  Up |  Next

Article

Keywords:
extreme points; vector valued continuous functions; compact linear operators; Orlicz spaces
Summary:
Let $E^{\varphi }(\mu )$ be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator $T:E^{\varphi }(\mu )\rightarrow C(\Omega )$ is extreme if and only if $T^{\ast }\omega \in \operatorname{Ext}\, B((E^{\varphi }(\mu ))^{\ast })$ on a dense subset of $\Omega $, where $\Omega $ is a compact Hausdorff topological space and $\langle T^{\ast } \omega ,x\rangle=(T x)(\omega )$. This is done via the description of the extreme points of the space of continuous functions $C(\Omega ,L^{\varphi }(\mu ))$, $L^{\varphi }(\mu )$ being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme points of the unit ball with respect to the Orlicz norm.
References:
[1] Aubin J.P., Cellina A.: Differential Inclusions. Springer Verlag, Berlin, 1984. MR 0755330 | Zbl 0538.34007
[2] Blumenthal R.M., Lindenstrauss J., Phelps R.R.: Extreme operators into $C(K)$. Pacific J. Math. 15 (1965), 747-756. MR 0209862 | Zbl 0141.32101
[3] Clausing A., Papadopoulou S.: Stable convex sets and extreme operators. Math. Ann. 231 (1978), 193-203. MR 0467249
[4] Dunford N., Schwartz J.T.: Linear Operators I, General Theory. Pure Appl. Math., vol. 7, Interscience, New York, 1958. MR 0117523 | Zbl 0084.10402
[5] Grząślewicz R.: Extreme points in $C(K,L^{\varphi }(\mu))$. Proc. Amer. Math. Soc. 98 (1986), 611-614. MR 0861761 | Zbl 0606.46019
[6] Krasnosel'skii M.A., Rutickii Y.B.: Convex Functions and Orlicz Spaces. Nordhoff, Groningen, 1961.
[7] Lao B.Y., Zhu X.: Extreme points of Orlicz spaces (in Chinese). J. Zhongshan University, no. 2 (1983), 27-36.
[8] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II. Springer Verlag, Berlin-Heidelberg- New York, 1977. MR 0500056 | Zbl 0403.46022
[9] Luxemburg W.A.J.: Banach Function Spaces. Thesis, Delft, 1955. MR 0072440 | Zbl 0162.44701
[10] Michael E.: Continuous selections I. Ann. of Math. (2) 63 (1956), 361-382. MR 0077107 | Zbl 0071.15902
[11] Morris P.D., Phelps R.R.: Theorems of Krein-Milman type for certain convex sets of operators. Trans. Amer. Math. Soc. 150 (1970), 183-200. MR 0262804 | Zbl 0198.46601
[12] Musielak J.: Orlicz spaces and modular spaces. Lecture Notes in Math. 1034, Springer Verlag, 1983. MR 0724434 | Zbl 0557.46020
[13] Orlicz W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Intern. Acad. Pol., série A, Kraków (1932), 207-220. Zbl 0006.31503
[14] Papadopoulou S.: On the geometry of stable compact convex sets. Math. Ann. 229 (1977), 193-200. MR 0450938 | Zbl 0339.46001
[15] Wang Zhuogiang: Extreme points of Orlicz sequence spaces (in Chinese). J. Daqing Oil College, no. 1 (1983), 112-121.
[16] Wisła M.: Extreme points and stable unit balls in Orlicz sequence spaces. Archiv der Math. 56 (1991), 482-490. MR 1100574
[17] Wisła M.: A full description of extreme points in $C(Ømega , L^{\varphi }(\mu))$. Proc. of Amer. Math. Soc. 113 (1991), 193-200. MR 1072351
[18] Wu Congxin, Wang Tingfu, Chen Shutao, Wang Youwen: Geometry of Orlicz Spaces (in Chinese). Harbin Institute of Technology, Harbin, 1986.
[19] Wu Congxin, Zhao Shanzhong, Chen Junao: On calculation of rotundity of Orlicz spaces (in Chinese). J. Harbin Inst. of Technology, no. 2 (1978), 1-12.
Partner of
EuDML logo