Article
Keywords:
universal completion; metric space; uniform space
Summary:
A criterion for the existence of an initial completion of a concrete category $\bold K$ universal w.r.t\. finite products and subobjects is presented. For $\bold K=$ metric spaces and uniformly continuous maps this completion is the category of uniform spaces.
References:
[A] Adámek J.:
Theory of Mathematical Structures. Reidel Publ. Comp., Dordrecht, 1983.
MR 0735079
[AHS] Adámek J., Herrlich H., Strecker G.E.:
Least and largest initial completion. Comment. Math. Univ. Carolinae 20 (1979), 43-75.
MR 0526147
[C] Čech E.:
Topological Spaces. Academia Prague, 1966.
MR 0211373
[E] Ehersmann A.E.:
Partial completions of concrete functors. Cahiers Topo. Géom. Diff. 22 (1981), 315-328.
MR 0649079
[PRRS] Pelant J., Reiterman J., Rödl V., Simon P.:
Ultrafilters on $ømega $ and atoms in the lattice of uniformities I. Topology and Appl. 30 (1988), 1-17.
MR 0964058