[1] Bliedtner J., Hansen W.:
Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer-Verlag, Berlin, 1986.
MR 0850715 |
Zbl 0706.31001
[2] Borwein J.M., Théra M.: Sandwich Theorems for Semicontinuous Operators. preprint, 1990.
[3] Bourbaki N.:
Topologie Générale, ch. IX. Hermann & Cie, Paris, 1948.
MR 0027138
[4] Constantinescu C., Cornea A.:
Potential Theory on Harmonic Spaces. Springer-Verlag, Berlin, 1972.
MR 0419799 |
Zbl 0248.31011
[5] Fletcher P., Lindgren W.F.:
Quasi-uniform spaces. Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker inc., New York, 1982.
MR 0660063 |
Zbl 0583.54017
[6] Gerritse G.:
Lattice-valued Semicontinuous Functions. Report 8532, Catholic University of Nijmegen, 1985.
Zbl 0872.54010
[7] Gierz G., Hofmann K., Keimel K., Lawson J., Mislove M., Scott D.:
A Compendium of Continuous Lattices. Springer-Verlag, Berlin, 1980.
MR 0614752 |
Zbl 0452.06001
[8] van Gool F.A.: Non-linear Potential Theory. Preprint 606, University of Utrecht, 1990.
[9] Holwerda H.: Closed Hypographs, Semicontinuity and the Topological Closed-graph Theorem: A unifying Approach. Report 8935, Catholic University of Nijmegen, 1989.
[10] Katětov M.:
On real-valued functions in topological spaces. Fundamenta Mathematicae 38 (1951), 85-91 Correction in Fund. Math. 40 (1953), 203-205.
MR 0050264
[12] Penot J.P., Théra M.: Semi-continuous mappings in general topology. Arch. Math. 38 (1982), 158-166.
[13] Tong H.:
Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289-292.
MR 0050265 |
Zbl 0046.16203