Previous |  Up |  Next

Article

Keywords:
factorization problems; Krull semigroups
Summary:
We introduce relative block semigroups as an appropriate tool for the study of certain phenomena of non-unique factorizations in residue classes. Thereby the main interest lies in rings of integers of algebraic number fields, where certain asymptotic results are obtained.
References:
[1] Geroldinger A.: Über nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505-529. MR 0932683 | Zbl 0618.12002
[2] Geroldinger A., Halter-Koch F.: Non-unique factorizations in block semigroups and arithmetical applications. Math. Slov., to appear. MR 1202179 | Zbl 0765.11045
[3] Geroldinger A., Halter-Koch F.: Realization Theorems for Krull Semigroups. Semigroup Forum 44 (1992), 229-237. MR 1141841
[4] Halter-Koch F.: Halbgruppen mit Divisorentheorie. Expo. Math. 8 (1990), 27-66. MR 1042201 | Zbl 0698.20054
[5] Halter-Koch F.: Ein Approximationssatz für Halbgruppen mit Divisorentheorie. Result. Math. 19 (1991), 74-82. MR 1091957 | Zbl 0742.20060
[6] Halter-Koch F., Müller W.: Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields. J. Reine Angew. Math. 421 (1991), 159-188. MR 1129580
[7] Kaczorowski J.: Some remarks on factorization in algebraic number fields. Acta Arith. 43 (1983), 53-68. MR 0730848 | Zbl 0526.12006
[8] Narkiewicz N.: Finite abelian groups and factorization problems. Coll. Math. 42 (1979), 319-330. MR 0567570 | Zbl 0514.12004
[9] Narkiewicz N.: Number Theory. World Scientific, 1983. Zbl 1115.11002
[10] Narkiewicz N.: Elementary and Analytic theory of algebraic numbers. Springer, 1990. MR 1055830 | Zbl 1159.11039
Partner of
EuDML logo