Article
Keywords:
factorization problems; Krull semigroups
Summary:
We introduce relative block semigroups as an appropriate tool for the study of certain phenomena of non-unique factorizations in residue classes. Thereby the main interest lies in rings of integers of algebraic number fields, where certain asymptotic results are obtained.
References:
[1] Geroldinger A.:
Über nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505-529.
MR 0932683 |
Zbl 0618.12002
[2] Geroldinger A., Halter-Koch F.:
Non-unique factorizations in block semigroups and arithmetical applications. Math. Slov., to appear.
MR 1202179 |
Zbl 0765.11045
[3] Geroldinger A., Halter-Koch F.:
Realization Theorems for Krull Semigroups. Semigroup Forum 44 (1992), 229-237.
MR 1141841
[5] Halter-Koch F.:
Ein Approximationssatz für Halbgruppen mit Divisorentheorie. Result. Math. 19 (1991), 74-82.
MR 1091957 |
Zbl 0742.20060
[6] Halter-Koch F., Müller W.:
Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields. J. Reine Angew. Math. 421 (1991), 159-188.
MR 1129580
[7] Kaczorowski J.:
Some remarks on factorization in algebraic number fields. Acta Arith. 43 (1983), 53-68.
MR 0730848 |
Zbl 0526.12006
[8] Narkiewicz N.:
Finite abelian groups and factorization problems. Coll. Math. 42 (1979), 319-330.
MR 0567570 |
Zbl 0514.12004
[9] Narkiewicz N.:
Number Theory. World Scientific, 1983.
Zbl 1115.11002