Article
Keywords:
Dugundji space; projective Boolean algebra; profinite lattice; supercompact
Summary:
We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.
References:
[B] Bell M.G.:
Not all dyadic spaces are supercompact. Comment. Math. Univ. Carolinae 31 (1990), 775-779.
MR 1091375 |
Zbl 0716.54017
[BG] Bell M.G., Ginsburg J.:
Compact spaces and spaces of maximal complete subgraphs. Trans. Amer. Math. Soc. 283 (1984), 329-338.
MR 0735426 |
Zbl 0554.54009
[CP] Clifford A.H., Preston B.:
The algebraic theory of semigroups. vol. 1, Providence, 1964.
Zbl 0238.20076
[Ha] Haydon R.:
On a problem of Pelczynski: Miljutin spaces, Dugundji spaces and ${AE}(0$-$\dim)$. Studia Math. 52 (1974), 23-31.
MR 0418025
[He] Heindorf L.:
Boolean semigroup rings and exponentials of compact, zero-dimensional spaces. Fund. Math. 135 (1990), 37-47.
MR 1074647 |
Zbl 0716.54006
[K] Koppelberg S.:
Projective Boolean Algebras. Chapter 20 of: J.D. Monk (ed.), Handbook of Boolean algebras, Amsterdam, 1989, vol. 3, 741-773.
MR 0991609 |
Zbl 0258.06010
[N] Numakura K.:
Theorems on compact totally disconnected semigroups and lattices. Proc. Amer. Math. Soc. 8 (1957), 623-626.
MR 0087032 |
Zbl 0081.25602
[S] Sčepin E.V.:
Functors and uncountable powers of compacts (in Russian). Uspehi Mat. Nauk 36 (1981), 3-62.
MR 0622720