[1] Bérard Bergery L.:
Les espaces homogènes riemanniens de dimension $4$. Géométrie riemannienne en dimension 4, Séminaire A. Besse, Cedic, Paris, 1981, 40-60.
MR 0769130
[2] Derdziński A.: preprint.
[3] Gromov M.: Partial differential equations. Ergeb. Math. Grenzgeb. 3 Folge 9, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[4] Jensen G.:
Homogeneous Einstein spaces in dimension four. J. Differential Geom. 3 (1969), 309-349.
MR 0261487
[5] Kowalski O.:
A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolinae 30 (1989), 85-88.
MR 0995705 |
Zbl 0679.53043
[6] Kowalski O., Tricerri F., Vanhecke L.:
Exemples nouveaux de variétés riemanniennes non- homogènes dont le tenseur de courbure est celui d'un espace symétrique riemannien. C.R. Acad. Sci. Paris Sér. I 311 (1990), 355-360.
MR 1071643
[7] Kowalski O., Tricerri F., Vanhecke L.:
Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl., to appear.
MR 1193605 |
Zbl 0836.53029
[8] Kowalski O., Tricerri F., Vanhecke L.:
Curvature homogeneous spaces with a solvable Lie group as homogeneous model. to appear.
MR 1167378 |
Zbl 0762.53031
[9] Sekigawa K.:
On the Riemannian manifolds of the form $B\times _f F$. Kōdai Math. Sem. Rep. 26 (1975), 343-347.
MR 0438253 |
Zbl 0304.53019
[10] Sekigawa K.:
On some $3$-dimensional curvature homogeneous spaces. Tensor N.S. 31 (1977), 87-97.
MR 0464115 |
Zbl 0356.53016
[11] Singer M.I.:
Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697.
MR 0131248 |
Zbl 0171.42503
[12] Takagi H.:
On curvature homogeneity of Riemannian manifolds. Tôhoku Math. J. 26 (1974), 581-585.
MR 0365417 |
Zbl 0302.53022
[13] Tricerri F., Vanhecke L.:
Curvature homogeneous Riemannian manifolds. Ann. Sci. Ecole Norm. Sup. 22 (1989), 535-554.
MR 1026749 |
Zbl 0698.53033