Article
Keywords:
free topological groups; function spaces
Summary:
In this paper we give a complete isomorphical classification of free topological groups $FM(X)$ of locally compact zero-dimensional separable metric spaces $X$. From this classification we obtain for locally compact zero-dimensional separable metric spaces $X$ and $Y$ that the free topological groups $FM (X)$ and $FM(Y)$ are isomorphic if and only if $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic.
References:
[1] Arhangel'skiĭ A.V.:
A survey of $C_p$-theory. Questions and Answers in General Topology 5 (1987) 1-109.
MR 0909494
[2] Baars J., de Groot J.:
An isomorphical classification of function spaces of zero-dimensional locally compact separable metric spaces. Comment. Math. Univ. Carolinae 29 (1988), 577-595.
MR 0972840 |
Zbl 0684.54011
[3] Engelking R.:
On closed images of the space of irrationals. Proc. Amer. Math. Soc. 21 (1969), 583-586.
MR 0239571 |
Zbl 0177.25501
[4] Graev M.I.:
Free topological groups. Am. Math. Soc. Transl. (1) 8 (1962), 305-364 (translation from {Svobodnye topologičeskie gruppy}, Izvestiya Akad. Nauk SSSR, Ser. Mat. 12 (1948) 279-324).
MR 0025474
[5] Graev M.I.:
Teorija topologičeskih grupp I. Uspehi Math. Nauk 5 (1950), 3-56.
MR 0036245
[6] Markov A.A.:
On free topological groups. Am. Math. Soc. Transl. (1) 8 (1962), 195-272 (translation from {O svobodnyh topologičeskih gruppah}, Izvestiya Akad. Nauk SSSR, Ser. Mat. 9 (1945) 3-64).
MR 0012301
[7] Okunev O.G.:
A method for constructing examples of $M$-equivalent spaces. Top. and its Appl. 36 (1990), 157-171.
MR 1068167 |
Zbl 0707.54007
[8] Pavlovskiĭ D.: On spaces of continuous functions. Soviet Math. Dokl. 22 (1980), 34-37.