[AZ] Appell J., Zabrejko P.:
Nonlinear superposition operators. Cambr. Univ. Press, Cambridge, 1990.
MR 1066204 |
Zbl 1156.47052
[BM] Bourdaud G., Meyer Y.:
Fonctions qui operent sur les espaces de Sobolev. J. Funct. Anal. 97 (1991), 351-360.
MR 1111186 |
Zbl 0737.46011
[CW] Cazenave T., Weissler F.B.:
The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$. Nonl. Anal. Th. Meth. Appl. 14 (1990), 807-836.
MR 1055532
[MM1] Marcus M., Mizel V.J.:
Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rat. Mech. Anal. 45 (1972), 294-320.
MR 0338765 |
Zbl 0236.46033
[MM2] Marcus M., Mizel V.J.:
Nemitsky operators on Sobolev spaces. Arch. Rat. Mech. Anal. 51 (1973), 347-370.
MR 0348480 |
Zbl 0266.46029
[MM3] Marcus M., Mizel V.J.:
Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33 (1978), 217-229.
MR 0546508
[N] Nikolskij S.M.:
Approximation of functions of several variables and imbedding theorems (2nd edition). Nauka, Moskva, 1977.
MR 0506247
[O1] Oswald P.:
On estimates for one-dimensional spline approximation. In: Splines in Numerical Analysis (eds. J.Späth, J.W.Schmidt), Proc. ISAM'89 Wei{ß}ig 1989, Akad. Verl., Berlin, 1989, 111-124.
MR 1004256 |
Zbl 0739.41015
[O2] Oswald P.: On estimates for hierarchic basis representations of finite element functions. Report N/89/16, FSU Jena, 1989.
[RS] Runst T., Sickel W.: Mapping properties of $T:f\to |f|$ in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem. J. Approx. Th. (submitted).
[S1] Sickel W.:
On boundedness of superposition operators in spaces of Triebel-Lizorkin type. Czech. Math. J. 39 (1989), 323-347.
MR 0992137 |
Zbl 0693.46039
[S2] Sickel W.:
Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ. (submitted).
Zbl 0792.47062
[T] Triebel H.:
Interpolation theory, function spaces, differential operators. Dt. Verlag Wiss., Berlin 1978 - North-Holland, Amsterdam-New York-Oxford, 1978.
MR 0500580 |
Zbl 0830.46028