Article
Keywords:
Čech--Stone compactification of discrete spaces; weak $p$-points; independent matrix
Summary:
We prove the existence of $(2^\tau, \tau )$-matrix points among uniform and regular points of Čech--Stone compactification of uncountable discrete spaces and discuss some properties of these points.
References:
[K] Kunen K.: Weak $p$-points in $\beta N\setminus N$. Coll. Math. Soc. Janos Bolyai, Topology, Budapest, vol. 23, 341-349.
[G$_1$] Gryzlov A.: Ob odnom klasse tochek prostranstva $N^{\ast }$. Leningradskaya mezhdunarodnaya konf., Leningrad, Nauka, 1982, p. 57.
[G$_2$] Gryzlov A.: K teorii prostranstva $\beta N$. Obshchaya topologiya, Mosk. Univ., Moskva, 1986, 20-33.
[EK] Engelking R., Karłowicz M.:
Cartesian products and dyadic spaces. Fund. Math. 57 (1965), 287-304.
MR 0196692