[1] Browder F.E., Petryshyn V.W.:
The solution by iteration of nonlinear functional equations in Banach spaces. Bull. AMS 72 (1966), 571-576.
MR 0190745 |
Zbl 0138.08202
[2] Bynum W.L.:
Normal structure coefficients for Banach spaces. Pacific J. Math. 86 (1980), 427-436.
MR 0590555 |
Zbl 0442.46018
[3] Casini E., Maluta E.:
Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure. Nonlinear Anal., TMA 9 (1985), 103-108.
MR 0776365 |
Zbl 0526.47034
[4] Daneš J.:
On densifying and related mappings and their applications in nonlinear functional analysis. in: Theory of Nonlinear Operators (Proc. Summer School, October 1972, GDR), Akademie-Verlag, Berlin, 1974, 15-56.
MR 0361946
[5] Downing D.J., Turett B.:
Some properties of the characteristic convexity relating to fixed point theory. Pacific J. Math. 104 (1983), 343-350.
MR 0684294
[6] Edelstein M., O'Brien C.R.:
Nonexpansive mappings, asymptotic regularity and successive approximations. J. London Math. Soc. (2) 17 (1978), 547-554.
MR 0500642 |
Zbl 0421.47031
[7] Gillespie A.A., Williams B.B.:
Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure. Appl. Anal. 9 (1979), 121-124.
MR 0539537
[8] Górnicki J.:
A fixed point theorem for asymptotically regular mappings. to appear.
MR 1201441
[9] Krüppel M.:
Ein Fixpunktsatz für asymptotisch reguläre Operatoren in gleichmäßig konvexen Banach-Räumen. Wiss. Z. Pädagog. Hochsch. ``Liselotte Herrmann'' Güstrow, Math.-naturwiss. Fak. 25 (1987), 241-246.
MR 0971250
[10] Lin P.K.:
A uniformly asymptotically regular mapping without fixed points. Canad. Math. Bull. 30 (1987), 481-483.
MR 0919440 |
Zbl 0645.47050
[11] Yu X.T.:
On uniformly normal structure. Kexue Tongbao 33 (1988), 700-702.
Zbl 0681.46020
[12] Yu X.T.:
A geometrically aberrant Banach space with uniformly normal structure. Bull. Austral. Math. Soc. 38 (1988), 99-103.
MR 0968233 |
Zbl 0646.46017