Previous |  Up |  Next

Article

Keywords:
Butler group; generalized regular subgroup
Summary:
A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph_\omega$ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup_{\alpha < \mu}B_\alpha$ of pure subgroups $B_\alpha$ having countable typesets.
References:
[A] Arnold D.: Notes on Butler groups and balanced extensions. Boll. Un. Mat. Ital. A(6) 5 (1986), 175-184. MR 0850285 | Zbl 0601.20050
[B1] Bican L.: Splitting in abelian groups. Czech. Math. J. 28 (1978), 356-364. MR 0480778 | Zbl 0421.20022
[B2] Bican L.: Purely finitely generated groups. Comment. Math. Univ. Carolinae 21 (1980), 209-218. MR 0580678
[BS] Bican L., Salce L., HASH(0x91ad320): Infinite rank Butler groups. Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., vol. 1006, Springer-Verlag, 1983, 171-189.
[BSS] Bican L., Salce L., Štěpán J.: A characterization of countable Butler groups. Rend. Sem. Mat. Univ. Padova 74 (1985), 51-58. MR 0818715
[B] Butler M.C.R.: A class of torsion-free abelian groups of finite rank. Proc. London Math. Soc. 15 (1965), 680-698. MR 0218446 | Zbl 0131.02501
[D] Dugas M.: On some subgroups of infinite rank Butler groups. Rend. Sem. Mat. Univ. Padova 79 (1988), 153-161. MR 0964027 | Zbl 0667.20043
[DHR] Dugas M., Hill P., Rangaswamy K.M.: Infinite rank Butler groups II. Trans. Amer. Math. Soc. 320 (1990), 643-664. MR 0963246
[DR] Dugas M., Rangaswamy K.M.: Infinite rank Butler groups. Trans. Amer. Math. Soc. 305 (1988), 129-142. MR 0920150 | Zbl 0641.20036
[F1] Fuchs L.: Infinite Abelian groups. vol. I and II, Academic Press, New York, 1973 and 1977. MR 0255673 | Zbl 0338.20063
[F2] Fuchs L.: Infinite rank Butler groups. preprint.
[FM] Fuchs L., Metelli C.: Countable Butler groups. Contemporary Math., to appear. MR 1176115 | Zbl 0769.20025
[FV] Fuchs L., Viljoen G.: Note on the extensions of Butler groups. Bull. Austral. Math. Soc. 41 (1990), 117-122. MR 1043972
Partner of
EuDML logo