Previous |  Up |  Next

Article

Keywords:
$\Cal P$-approximable space; Lindelöf $\Sigma $-space; compact; metrizable; $C$-closed; sequential; linearly ordered
Summary:
For every topological property $\Cal P$, we define the class of $\Cal P$-approximable spaces which consists of spaces X having a countable closed cover $\gamma $ such that the ``section'' $X(x,\gamma )= \bigcap \{F\in \gamma :x\in F\}$ has the property $\Cal P$ for each $x\in X$. It is shown that every $\Cal P$-approximable compact space has $\Cal P$, if $\Cal P$ is one of the following properties: countable tightness, $\aleph _0$-scatteredness with respect to character, $C$-closedness, sequentiality (the last holds under MA or $2^{\aleph _0}<2^{\aleph _1}$). Metrizable-approximable spaces are studied: every compact space in this class has a dense, Čech-complete, paracompact subspace; moreover, if $X$ is linearly ordered, then $X$ contains a dense metrizable subspace.
References:
[1] Alexandroff P.S., Urysohn P.S.: Memoir on compact topological spaces (in Russian). Moscow, Nauka, 1971. MR 0370492
[2] Arhangel'skii A.V.: Bicompact sets and the topology of spaces. Trans. Mosc. Math. Soc. 13 (1965), 1-62. MR 0195046
[3] Arhangel'skii A.V.: On one class of spaces that contains all metrizable and all locally compact spaces (in Russian). Matem. Sb. 67 (1965), 55-88. MR 0190889
[4] Arhangel'skii A.V.: On bicompacta hereditarily satisfying the Souslin condition. Tightness and free sequences. Soviet. Math. Dokl. 12 (1971), 1253-1257.
[5] Arhangel'skii A.V.: On compact spaces which are unions of certain collections of subspaces of special type. Comment. Math. Univ. Carolinae 17 (1976), 737-753. MR 0445453
[6] Arhangel'skii A.V.: On topologies weakly connected with orderings (in Russian). Dokl AN SSSR 238 (1978), 773-776. MR 0515022
[7] Arhangel'skii A.V.: On spaces of continuous functions with the pointwise convergence topology (in Russian). Dokl. AN SSSR 240 (1978), 505-508. MR 0500817
[8] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants (in Russian). Uspechi Mat. Nauk 33 (1978), 29-84. MR 0526012
[9] Arhangel'skii A.V.: On invariants of type character and weight (in Russian). Trudy Mosc. Mat. Obsch. 38 (1979), 3-27. MR 0544935
[10] Balcar B., Pelant J., Simon P.: The space of ultrafilters on $\Bbb N$ covered by nowhere dense sets. Fund. Math. 110 (1980), 11-24. MR 0600576
[11] Engelking R.: General Topology. Warszawa, PWN, 1977. MR 0500780 | Zbl 0684.54001
[12] Franklin S.P.: Spaces in which sequences suffice, II. Fund. Math. 57 (1967), 51-56. MR 0222832 | Zbl 0168.43502
[13] Gul'ko S.P.: On the structure of spaces of continuous functions and their hereditary paracompactness (in Russian). Uspechi Mat. Nauk 34 (1979), 33-40. MR 0562814
[14] Ismail M.: Products of $C$-closed spaces. Houston J. Math. 10 (1984), 195-199. MR 0744903
[15] Ismail M., Nyikos P.: On spaces in which countably compact sets are closed, and hereditary properties. Topology Appl. 11 (1980), 281-292. MR 0585273 | Zbl 0434.54018
[16] Juhász I.: Cardinal functions in topology. Math. Centre Tracts, 34, Amsterdam, 1971. MR 0340021
[17] Leiderman A.G.: On dense metrizable subspaces of Corson compact spaces (in Russian). Matem. Zametki 38 (1985), 440-449. MR 0811578
[18] Malyhin V.I.: On the tightness and the Souslin number of ${exp} X$ and of a product of spaces. Soviet Math. Dokl. 13 (1972), 496-499.
[19] Malyhin V.I., Šapirovskii B.E.: Martin's axiom and properties of topological spaces (in Russian). Dokl. AN SSSR 213 (1973), 532-535. MR 0343241
[20] Nagami K.: $\Sigma $-spaces. Fund. Math. 65 (1969), 169-192. MR 0257963 | Zbl 0181.50701
[21] Noble N.: Products with closed projections, II. Trans. Amer. Math. Soc. 160 (1971), 169-183. MR 0283749 | Zbl 0233.54004
[22] Šapirovskii B.E.: On mappings onto Tychonoff cubes (in Russian). Uspechi Mat. Nauk 35 (1980), 122-130. MR 0580628
[23] Simon P.: Covering of a space by nowhere dense sets. Comment. Math. Univ. Carolinae 18 (1977), 755-761. MR 0464133 | Zbl 0373.54009
[24] Sokolov G.A.: On some classes of compact spaces lying in $\Sigma $-products. Comment. Math. Univ. Carolinae 25 (1984), 219-231. MR 0768809 | Zbl 0577.54014
[25] Štěpánek P., Vopěnka P.: Decomposition of metric spaces into nowhere dense sets. Comment. Math. Univ. Carolinae 8 (1967), 387-404, 567-568. MR 0225657
[26] Talagrand M.: Sur les espaces Banach faiblement $K$-analytiques. Comp. Rend. Acad. Sci., Ser. A 285 (1977), 119-122. MR 0440342
[27] Tkačenko M.G.: Some addition theorems in the class of compact spaces (in Russian). Sibir. Mat. J. 24 (1983), 135-143. MR 0731050
[28] Tkačenko M.G.: On compactness of countably compact spaces having additional structure. Trans. Mosc. Math. Soc. 1984, Issue 2, 149-167.
[29] Tkačenko M.G.: The notion of o-tightness and $C$-embedded subspaces of products. Topology Appl. 15 (1983), 93-98. MR 0676970
[30] Todorčević S.: Cardinal functions on linearly ordered topological spaces, - Topology and order structures, Part I (Lubbock, Tex., 1980). p. 177-179, Math. Centre Tracts, 142, Math. Centrum, Amsterdam, 1981 (). MR 0630552
[31] Todorčević S.: Stationary sets and continuums. Publ. Inst. Math., Nouvelle sér. 27 (1981), 249-262. MR 0657114
[32] White H.E.: First-countable spaces that have special pseudobases. Canad. Math. Bull. 21 (1978), 103-112. MR 0482615
Partner of
EuDML logo