Article
Keywords:
inverse systems; approximate inverse systems; uniform; metric and complete spaces; covering and inductive dimension
Summary:
The fundamental properties of approximate inverse systems of uniform spaces are established. The limit space of an approximate inverse sequence of complete metric spaces is the limit of an inverse sequence of some of these spaces. This has an application to the dimension of the limit space of an approximate inverse system. A topologically complete space with $\operatorname{dim} \leq n$ is the limit of an approximate inverse system of metric polyhedra of $\operatorname{dim} \leq n$. A completely metrizable separable space with $\operatorname{dim} \leq n$ is the limit of an inverse sequence of locally finite polyhedra of $\operatorname{dim} \leq n$. Finally, a new proof is derived of the important equality $\operatorname{dim} = \operatorname{Ind}$ for metric spaces.
References:
[1] Charalambous M.G.:
A new covering dimension function for uniform spaces. J. London Math. Soc. (2) 11 (1975), 137-143.
MR 0375258 |
Zbl 0306.54048
[5] Freudenthal H.:
Entwicklungen von Räumen und ihren Gruppen. Compositio Math. 4 (1937), 145-234.
MR 1556968 |
Zbl 0016.28001
[8] Mardešić S.:
On covering dimension and inverse limits of compact spaces. Illinois J. Math. 4 (1960), 278-291.
MR 0116306
[9] Mardešić S., Rubin L.R.:
Approximate uniform spaces of compacta and covering dimension. Pacific J. Math. 138 (1989), 129-144.
MR 0992178
[11] Pasynkov B.A.:
On polyhedra spectra and dimension of bicompacta and of bicompact groups (in Russian). Dokl. Akad. Nauk SSSR 121 (1958), 45-48.
MR 0102058
[12] Pasynkov B.A.:
Factorization theorems in dimension theory. Russian Math. Surveys 36 (1981), 175-209.
MR 0622723 |
Zbl 0487.54034
[13] Pears A.R.:
Dimension Theory of General Spaces. Cambridge Univ. Press, Cambridge, 1976.
MR 0394604 |
Zbl 0312.54001