Article
Keywords:
cosymplectic manifold; locally conformal cosymplectic manifold; Hamiltonian systems
Summary:
We show that locally conformal cosymplectic manifolds may be seen as generalized phase spaces of time-dependent Hamiltonian systems. Thus we extend the results of I. Vaisman for the time-dependent case.
References:
[1] Abraham R., Marsden J.:
Foundations of Mechanics. $2^{nd}$ ed., Benjamin, New York, 1978.
MR 0515141 |
Zbl 0393.70001
[2] Chinea D., Marrero J.C.:
Locally conformal cosymplectic manifolds. preprint.
Zbl 0748.53016
[3] Libermann P.:
Sur les structures presque complexes et autres structures infinitésimales régulières. Bull. Soc. Math. France 83 (1955), 195-224.
MR 0079766
[4] Libermann P., Marle Ch.:
Symplectic Geometry and Analytical Mechanics. Reidel Publ., Dordrecht, 1987.
MR 0882548 |
Zbl 0643.53002
[5] de León M., Rodrigues P.: Methods of Differential Geometry in Analytical Mechanics. NorthHolland Mathematical Studies No. 158, Amsterdam, 1989.
[6] Takizawa S.:
On contact structures of real and complex manifolds. Tôhoku Math. J. 15 (1963), 227-252.
MR 0157331 |
Zbl 0122.40704
[7] Vaisman I:
Locally conformal symplectic manifolds. Internat. J. Math. & Math. Sci. 8, 3 (1985), 521-536.
MR 0809073 |
Zbl 0585.53030