Article
Keywords:
strong inclusion; compactification; uniform $\sigma$-frame; uniform cozero
Summary:
A bijective correspondence between strong inclusions and compactifications in the setting of $\sigma$-frames is presented. The category of uniform $\sigma$-frames is defined and a description of the Samuel compactification is given. It is shown that the Samuel compactification of a uniform frame is completely determined by the $\sigma$-frame consisting of its uniform cozero part, and consequently, any compactification of any frame is so determined.
References:
[1] Banaschewski B.:
Frames and compactifications. Proc. I. International Symp. on Extension Theory of Topological Structures and Its Applications. VEB Deutscher Verlag der Wissenschaften, 1969.
Zbl 0188.28006
[2] Banaschewski B., Gilmour C.R.A.:
Stone-Čech compactification and dimension theory for regular $\sigma$-frames. J. London Math. Soc.(2) No. 127, 39, part 1 1-8 (1989).
MR 0989914 |
Zbl 0675.06005
[3] Banaschewski B., Mulvey C.:
Stone-Čech compactification of Locales I. Houston J. of Math. 6, 3 (1980), 301-312.
MR 0597771 |
Zbl 0473.54026
[4] Frith J.L.:
The Category of Uniform Frames. Cahier de Topologie et Geometrie, to appear.
MR 1109372 |
Zbl 0738.18002
[5] Gilmour C.R.A.:
Realcompact Alexandroff spaces and regular $\sigma$-frames. Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79.
MR 0743702
[6] Ginsburg S., Isbell J.R.:
Some operators on uniform spaces. Trans. Amer. Math. Soc. 36 (1959), 145-168.
MR 0112119 |
Zbl 0087.37601
[7] Johnstone P.T.:
Stone Spaces. Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982.
MR 0698074 |
Zbl 0586.54001
[8] Madden J., Vermeer H.: Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. (1985), 1-8.
[9] Pultr A.:
Pointless uniformities I. Complete regularity. Comment. Math. Univ. Carolinae 25 (1984), 91-104.
MR 0749118 |
Zbl 0543.54023