Article
Keywords:
strongly damped beam equation; compact attractor; upper semicontinuity of global attractors
Summary:
The limiting behavior of global attractors $\Cal A_\varepsilon $ for singularly perturbed beam equations $$\varepsilon^2 \frac{\partial^2u}{\partial t^2}+ \varepsilon\delta \frac{\partial u}{\partial t}+A \frac{\partial u}{\partial t}+\alpha Au+g(\|u\|_{1/4}^2)A^{1/2}u=0 $$ is investigated. It is shown that for any neighborhood $\Cal U$ of $\Cal A_0$ the set $\Cal A_\varepsilon$ is included in $\Cal U$ for $\varepsilon$ small.
References:
[BV] Babin A.B., Vishik M.N.:
Attraktory evolucionnych uravnenij s častnymi proizvodnymi i ocenki ich razmernosti (in Russian). Uspechi mat. nauk 38 (1983), 133-185.
MR 0710119
[B1] Ball J.M.:
Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl. 42 (1973), 61-96.
MR 0319440 |
Zbl 0254.73042
[B2] Ball J.M.:
Stability theory for an extensible beam. J. of Diff. Equations 14 (1973), 399-418.
MR 0331921 |
Zbl 0247.73054
[ChL] Chow S.-N., Lu K.:
Invariant manifolds for flows in Banach spaces. J. of Diff. Equations 74 (1988), 285-317.
MR 0952900 |
Zbl 0691.58034
[F] Fitzgibbon W.E.:
Strongly damped quasilinear evolution equations. J. of Math. Anal. Appl. 79 (1981), 536-550.
MR 0606499 |
Zbl 0476.35040
[GT] Ghidaglia J.M., Temam R.:
Attractors for damped nonlinear hyperbolic equations. J. de Math. Pures et Appl. 79 (1987), 273-319.
MR 0913856 |
Zbl 0572.35071
[H] Henry D.:
Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840, Springer Verlag.
MR 0610244 |
Zbl 0663.35001
[HR1] Hale J.K., Rougel G.:
Upper semicontinuity of an attractor for a singularly perturbed hyperbolic equations. J. of Diff. Equations 73 (1988), 197-215.
MR 0943939
[HR2] Hale J.K., Rougel G.:
Lower semicontinuity of an attractor for a singularly perturbed hyperbolic equations. Journal of Dynamics and Diff. Equations 2 (1990), 16-69.
MR 1041197
[M1] Massat P.:
Limiting behavior for strongly damped nonlinear wave equations. J. of Diff. Equations 48 (1983), 334-349.
MR 0702424
[M2] Massat P.:
Attractivity properties of $\alpha $-contractions. J. of Diff. Equations 48 (1983), 326-333.
MR 0702423