Previous |  Up |  Next

Article

Keywords:
strongly damped beam equation; compact attractor; upper semicontinuity of global attractors
Summary:
The limiting behavior of global attractors $\Cal A_\varepsilon $ for singularly perturbed beam equations $$\varepsilon^2 \frac{\partial^2u}{\partial t^2}+ \varepsilon\delta \frac{\partial u}{\partial t}+A \frac{\partial u}{\partial t}+\alpha Au+g(\|u\|_{1/4}^2)A^{1/2}u=0 $$ is investigated. It is shown that for any neighborhood $\Cal U$ of $\Cal A_0$ the set $\Cal A_\varepsilon$ is included in $\Cal U$ for $\varepsilon$ small.
References:
[BV] Babin A.B., Vishik M.N.: Attraktory evolucionnych uravnenij s častnymi proizvodnymi i ocenki ich razmernosti (in Russian). Uspechi mat. nauk 38 (1983), 133-185. MR 0710119
[B1] Ball J.M.: Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl. 42 (1973), 61-96. MR 0319440 | Zbl 0254.73042
[B2] Ball J.M.: Stability theory for an extensible beam. J. of Diff. Equations 14 (1973), 399-418. MR 0331921 | Zbl 0247.73054
[ChL] Chow S.-N., Lu K.: Invariant manifolds for flows in Banach spaces. J. of Diff. Equations 74 (1988), 285-317. MR 0952900 | Zbl 0691.58034
[F] Fitzgibbon W.E.: Strongly damped quasilinear evolution equations. J. of Math. Anal. Appl. 79 (1981), 536-550. MR 0606499 | Zbl 0476.35040
[GT] Ghidaglia J.M., Temam R.: Attractors for damped nonlinear hyperbolic equations. J. de Math. Pures et Appl. 79 (1987), 273-319. MR 0913856 | Zbl 0572.35071
[H] Henry D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840, Springer Verlag. MR 0610244 | Zbl 0663.35001
[HR1] Hale J.K., Rougel G.: Upper semicontinuity of an attractor for a singularly perturbed hyperbolic equations. J. of Diff. Equations 73 (1988), 197-215. MR 0943939
[HR2] Hale J.K., Rougel G.: Lower semicontinuity of an attractor for a singularly perturbed hyperbolic equations. Journal of Dynamics and Diff. Equations 2 (1990), 16-69. MR 1041197
[M1] Massat P.: Limiting behavior for strongly damped nonlinear wave equations. J. of Diff. Equations 48 (1983), 334-349. MR 0702424
[M2] Massat P.: Attractivity properties of $\alpha $-contractions. J. of Diff. Equations 48 (1983), 326-333. MR 0702423
Partner of
EuDML logo