Previous |  Up |  Next

Article

Keywords:
locally convex space; orthogonality space; Hahn--Banach extension property
Summary:
In this paper, we investigate the existence and characterizations of locally convex topologies in a linear orthogonality space.
References:
[1] Kąkol J.: Basic sequences and non locally convex topological vector spaces. Rend. Circ. Mat. Palermo (2) 36 (1987), 95-102. MR 0944650
[2] Kalton N.J., Peck N.T., Roberts J.W.: An F-space sampler. vol. 89 of London Mathematical Society Lecture Note Series, Cambridge University Press, 1984. MR 0808777 | Zbl 0556.46002
[3] Piziak R.: Mackey closure operators. J. London Math. Soc. 4 (1971), 33-38. MR 0295977 | Zbl 0253.06001
[4] Piziak R.: Sesquilinear forms in infinite dimensions. Pacific J. Math. 43 (2) (1972), 475-481. MR 0318850 | Zbl 0237.46007
[5] Sorjonen P.: Lattice-theoretical characterizations of inner product spaces. Studia Sci. Math. Hungarica 19 (1984), 141-149. MR 0787796 | Zbl 0588.46019
[6] Sorjonen P.: Hahn-Banach extension properties in linear orthogonality spaces. Funct. Approximatio, Comment. Math., to appear. MR 1201711 | Zbl 0793.46007
[7] Wilbur W.J.: Quantum logic and the locally convex spaces. Trans. Amer. Math. Soc. 207 (1975), 343-360. MR 0367607 | Zbl 0289.46019
Partner of
EuDML logo