Article
Keywords:
oscillation theory; conditional oscillation; half-linear differential equations
Summary:
We show that the half-linear differential equation
\[ \big [r(t)\Phi (x^{\prime })\big ]^{\prime } + \frac{s(t)}{t^p} \Phi (x) = 0 \ast \]
with $\alpha $-periodic positive functions $r, s$ is conditionally oscillatory, i.e., there exists a constant $K>0$ such that () with $\frac{\gamma s(t)}{t^p}$ instead of $\frac{s(t)}{t^p}$ is oscillatory for $\gamma > K$ and nonoscillatory for $\gamma < K$.
References:
[1] Došlý, O., Řehák, P.:
Half-Linear Differential Equations. Elsevier, Mathematics Studies 202, 2005.
MR 2158903 |
Zbl 1090.34001